

Homework

due 2026-02-26, before class

Exams (tentatively)

midterm : **Tuesday, March 24, 2026, 11:00-12:15**
 final: **tbd**

VII. MAXWELL DISTRIBUTION [(4+2) PTS]

The Maxwell velocity distribution describes the probability density for the velocity $\mathbf{v} = (v_x, v_y, v_z)$ of a particle with mass m in an ideal gas at temperature T . It is given by

$$N(\mathbf{v})d^3v = \left(\frac{m}{2\pi k_B T} \right)^{3/2} \exp\left(-\frac{m\mathbf{v}^2}{2k_B T} \right) d^3v.$$

- a) Calculate the average of the magnitude of the velocity (speed) $|\mathbf{v}|$.
- b) Calculate the probability distribution $N_x(v_x)dv_x$ for the x-component, v_x , of the velocity \mathbf{v} .
- ★ Use $\int_0^\infty dx x^n e^{-ax^2} = \Gamma((n+1)/2)/(2a^{(n+1)/2})$ for $a > 0$.

VIII. HARMONIC OSCILLATORS [4 PTS]

We consider a system of N uncoupled classical oscillators in 3D

$$H(\mathbf{q}, \mathbf{p}) = \sum_{i=1}^N \left(\frac{\mathbf{p}_i^2}{2m_i} + \frac{m_i\omega_i^2}{2} \mathbf{q}_i^2 \right).$$

Each point $\vec{X} = (\mathbf{q}, \mathbf{p}) \equiv (\mathbf{q}_1, \dots, \mathbf{q}_N, \mathbf{p}_1, \dots, \mathbf{p}_N)$ in phase-space represents a microstate of the system. A macrostate $M(E_1, E_2)$ shall consist of all \vec{X} with $E_1 \leq H(\vec{X}) \leq E_2$. Calculate the phase-space volume $|\Gamma[M(E_1, E_2)]|$. Discuss how the phase-space volume of a shell $M((1-\epsilon)E, E)$ with relative thickness $0 < \epsilon < 1$ compares to the phase-space volume of an ellipsoid $M(0, E)$ in the limit for large N .

IX. BOLTZMANN ENTROPY [(5+5) PTS]

Let us consider a system consisting of three sub-volumes with N Ising spins, $s_{i,L} = \pm 1$, in each ($i = 1, \dots, N$, $L = 1, 2, 3$). Here we neglect their interaction. The macrostate, $M = (m_1, m_2, m_3)$, shall be defined by the total spins $m_L = \sum_{i=1}^N s_{i,L}$ of each sub-volume.

- a) Calculate the Boltzmann entropy $S(M)$. Using this, obtain the equilibrium state $\tilde{M} = (\tilde{m}_1, \tilde{m}_2, \tilde{m}_3)$ and its entropy $S(\tilde{M})$.
 ★ Use Stirling's formula.
- b) Calculate the average quadratic fluctuations $\langle m_1^2 \rangle$ of the total spin in sub-volume 1.
 ★ Expand $S(M)$ up to order m_1^2 .

X. POTTS MODEL [(5+7) PTS]

In the classical 3-state Potts model, each of the N "spins" can have three states. A microstate is defined by the states (1, 2, or 3) for all spins. A macrostate, on the other hand, is defined by the occupation number $N_i = \frac{N}{3} + m_i$ ($i = 1, 2, 3$) of the three spin states. The m_i obviously have to fulfill the condition $m_1 + m_2 + m_3 = 0$.

- a) Find the number $W(m_1, m_2)$ of microstates belonging to a macrostate defined by $m_{1,2}$. What is the total number of microstates?
- b) For which $m_{1,2}^0$ is $W(m_1, m_2)$ maximal?
★ Expand $\ln W(m_1, m_2)$ around m_1^0, m_2^0 up to order $(m_i - m_i^0)^2$. How large are the deviations of the macro-variables $m_{1,2}$?

XI. DIRECTED POLYMER II [(4+4+4) PTS]

Here we consider a simplified model for a chain-molecule. We assume that the atoms, $i = 0, 1, \dots, N$, of the chain sit on grid points of a square lattice (x_i, y_i) (x_i, y_i are integers). Furthermore, the chain starts at $(x_0, y_0) = (0, 0)$ and the following positions are constrained by $x_i - x_{i-1} = 1$ and $|y_i - y_{i-1}| = 1$. Therefore the chain is directed along x -direction, avoiding, e.g., loops. The positions of the N atoms define the microstate.

- a) In problem VI we defined as the macrostate (N, y) all microstates, where the chain ends at $y_N = y$. Here we define, similarly, a macrostate as (i, y) , where the position $y_i = y$ of the i -th atom is fixed. What is the number, $W(i, y)$, of the corresponding microstates? Calculate also: $\sum_y W(i, y)$.
★ Remember, there are $N - i$ more atoms in the chain.
- b) Next, we define the macrostate as $(i, y; N, y')$, where the position of the i -th atom is $y_i = y$ **and** the position of the last atom is $y_N = y'$. What is the number, $W(i, y; N, y')$, of the corresponding microstates? Calculate also: $\sum_{y, y'} W(i, y; N, y')$.
- c) Finally, let us assume that a detector can only measure the position of every 10th atom, i.e., only $y_{10}, y_{20}, \dots, y_N$ are detected (assume $N = 10n$, $n \in \mathbb{N}$). How many microstates correspond to each experimentally measured "macrostate", $W(y_{10}, y_{20}, \dots, y_N)$? Calculate also $\sum_{y_{10}, y_{20}, \dots, y_N} W(y_{10}, y_{20}, \dots, y_N)$.