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Warm-up homework

due 2026-01-27 , before class
1HW

Exams (tentatively) midterm : Tuesday, March 24, 2026, 11:00-12:15
final: tbd

I. GAMMA FUNCTION AND STIRLING’S FORMULA [(3+5) PTS]

a) The Gamma function is defined as Γ(z + 1) =
∫∞
0

dt e−ttz for Re(z) > −1. It satisfies the functional equation
Γ(z + 1) = zΓ(z) with Γ(1) = 1. Therefore Γ(n + 1) = n! for n ∈ N. Prove the functional equation for real
arguments by partial integration.

b) Derive Stirling’s formula for large n

Γ(n+ 1) = n! ≈
√
2πnnne−n

by expanding the exponent in the integrand of

Γ(n+ 1) =

∞∫
0

dt e−ttn =

∞∫
0

dt e−t+n ln t

around its maximum to second order in t (saddle point approximation). How does the width of the maximum depend
on n?
⋆ ”Decrease” the lower integration limit to −∞ (Justify!);

∫∞
−∞ e−x2

dx =
√
π

II. VOLUME AND SURFACE AREAS IN HIGH-DIMENSIONAL SPACES [(3+1+3+4+3) PTS]

An important (and maybe surprising) fact for statistical physics is that
▷ almost the entire volume of a high-dimensional body is located just underneath its surface.
Since we have applications in phase-space in mind, the spacial dimension, D, is on the order of the Avogadro number
(NA ≈ 6.022× 1023).

a) As a start, we can check this by simple dimensional analysis. To this end, we assume that the volume VD(L) of the
D-dimensional body can be written as VD(L) = LDVD(1), where L is the typical (linear) length of the body. VD(1)
is assumed to depend only on the aspect ratios of the length scales and angles, which describe the shape of the body
and is invariant with respect to compression or expansion. Show that for arbitrary, fixed κ

lim
D→∞

VD(L)− VD(L− κL/D)

VD(L)
= 1− e−κ

and interpret this result (e.g. for small integer values of κ).

b) Can you think of objects, which do not follow the relation between linear dimension and volume given in a)? [extra
point for concrete example]
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c) Next we consider a D-dimensional cube with linear dimension, L, and a D-dimensional sphere with radius R. Justify
the following relations between volume (V ) and surface area (S)

d

dL
VD(L) =

1

2
SD(L) cube (1)

d

dR
VD(R) = SD(R) sphere .

For VD(L) = LD we get SD(1) = 2D for the surface area of the unit-cube. Is this correct? For the sphere we get
(from VD ∼ RD): VD(R) = R

DSD(R). What does this mean for large D?

d) Determine the surface area, SD, of the D-dimensional unit sphere by starting with the D-dimensional Gauss integral

∞∫
−∞

dDr e−r2 ,

where r = (x1, . . . , xD)T . Furthermore, use the fact that for radially symmetric functions f(x)

∞∫
−∞

dDr f(|r|) = SD

∞∫
0

dr rD−1f(r) ,

where we assume that f(r) decays sufficiently fast such that the integrals exist.
⋆ See problem I and use the fact that the D-dimensional Gaussian integral factorizes.

e) Finally, calculate the volume, VD, of the D-dimensional unit sphere explicitly:

VD(1) =

∫
r≤1

dDr

⋆ Use spherical coordinates and that fact that the integration over all angles gives the surface area SD.

III. MASTER EQUATION FOR RADIOACTIVE DECAY [(4+4) PTS]

The decay of radioactive nuclei is given by

N(t) = N0e
−λt

where N(t) is the average number of nuclei, which did not decay after time t given that the initial number was N0 at t = 0.
λ is the decay rate and λ∆t is the probability for a particular nucleus to decay in a (short) time interval ∆t (Explanation?).

a) Explain the following expression for the probability to find N non-decayed nuclei after time t

wN (t) =

(
N0

N

)(
e−λt

)N (
1− e−λt

)N0−N
, N = 0, 1, . . . , N0 .

Check the normalization of
∑

N wN (t) and the average
∑

N NwN (t).

b) Show that wN (t) satisfies the ”master equation”

ẇN (t) = (N + 1)λwN+1(t)−NλwN (t)

and interpret the result.



IV. DISTRIBUTIONS [(2 EACH) PTS]

Here we consider N particles, which shall be distributed into g containers. Calculate the number of possible distributions
for the following cases:

a) all particles are distinguishable (classical) and each container has infinite capacity.

b) all particles are distinguishable and each container holds at most one particle.

c) all particles are identical (indistinguishable) and each container has infinite capacity. [”Bosons”]

d) all particles are identical and each container holds at most one particle. [”Fermions”]

⋆ In quantum mechanics the containers in cases c) and d) correspond to single particle states.
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