
Advanced Computational Methods in Condensed Matter Physics - PHYS
790A

Spring 2026
Department of Physics - Northern Illinois University
Prof. Andreas Glatz www.aglatz.net/home/teaching/compphys_S2026

Project

due 2026-03-03
1P

I. COMPLEX GINZBURG-LANDAU EQUATION ON GPUS

“The cubic complex Ginzburg-Landau equation is one of the most-studied nonlinear equations in the physics community.
It describes a vast variety of phenomena from nonlinear waves to second-order phase transitions, from superconductivity,
superfluidity, and Bose-Einstein condensation to liquid crystals and strings in field theory.” [Rev. Mod. Phys. 74, 99
(2002)].
Here we are going to study the one- and two-dimensional time-dependent complex Ginzburg-Landau equation (CGLE)

∂tA = A+ (1 + ıb)∆A− (1 + ıc)|A|2A ,

where A = A(x; t) (1D) or A = A(x, y; t) (2D) is a complex function. The two real parameters b and c characterize the
linear and non-linear dispersion.
The CGLE shall be solved numerically on a grid with Nx ×Ny equidistant mesh points (in 2D, Nx in 1D) on a GPU using
a quasi-spectral split-step method and an iterative, parallel solver. Boundary conditions are to be periodic in space.
For the physical dimension of the simulation grid, we introduce the dimensionless length scales Lx and Ly, such that the
space is discretized as hx = Lx/Nx and hy = Ly/Ny.
The time is discretized as ht and the CGLE is integrated for Nt time steps.
Therefore the simulation parameters are:

• real values: b, c, ht, Lx, Ly

• integers: Nx, Ny, Nt

(Ny = 1 can be used to indicate the 1D case, or you would need to specify the dimensionality as an additional parameter.)
For stability and accuracy use ht/h

2
x,y < 1/2.

A. Quasi-spectral split-step method

This methods integrates the CGLE effectively in higher order in real space and at the same time provides a way to calculate
the Laplacian in Fourier space using a Fast-Fourier-Transformation, which uses higher order polynomials (the Fourier series),
i.e., a global representation - in contrast to local finite difference methods and therefore is, in principle, more accurate. We
can use this here directly due to periodic boundary conditions.
In the first, real space step, one calculates:

B(x, y) ≡ e∆t[1−(1+ıc)|A|2]A(x, y; t) .

Then B̂(kx, ky) = FFT(B), Ĉ(kx, ky) = exp[−∆t(1 + ıb)k2]B̂(kx, ky)/N and finally A(x, y; t+∆t) = FFT−1(Ĉ)

B. Jacobi Iteration solver

Using the Crank-Nicolson scheme, discretize the equation and solve the linearized equation system with Jacobi iterations.
For the nonlinear |A|2 term use the current time solution as estimator or an explicit Euler step in the Crank Nicolson
scheme, i.e., for the time discretization |A|2 → (|A|2(t) + |A|2est(t+ ht))/2, where |A|2est is calculated by an explicit Euler
step, which can be implemented in the initialization kernel function for the iteration matrix and rhs elements.

http://www.aglatz.net/home/teaching/compphys_S2016

C. Tasks

A template code with compile options is provided! This template code includes FFT wrappers, image output functions,
and iterative convergence check code.

a) Implement the quasi-spectral split-step solver for the CGLE in CUDA. Please use type REAL for real values and
COMPLEX for complex numbers.

• implement all complex operations for real and imaginary parts separately

• use the parameter MAXT for the maximum number of threads per block, calculate the number of blocks accordingly
based on this and Nx and Ny

• the Fast Fourier Transform requires manual normalization – multiply Â(kx, ky; t) by 1/N , N = Nx ×Ny

• in order to determine the “k”-index in Fourier space use the macro k_INDEX(i,Nx) due to the way the FFT is
implemented

b) Discretize the CGLE using a implicit Crank Nicolson scheme for the time and central difference in space, derive the
iteration matrix elements and the rhs of the linearized equation. Implement the iterative solver. This requires to
implement two kernel function to the code (initialization and iteration).

c) In order to “see” the evolution of A, we need to output it. We do not want to do that every time step, but only
every Nstep time steps. Therefore your time loop should check if nmodNstep = 0, where n is the current time step
and then “pull” A from the GPU and write it to a file (use a frame counter for file name generation in the 2D case).
Use the supplied routine writeBM_real(string fn,REAL *a,REAL m,REAL M,int nx,int ny,int cgrad) for
the image output - you should be able to output either |A|2 and arg(A) (atan2 function) or Re(A) and Im(A). In
1D, the y-axis is the time. The individual 2D images can be combined into a movie using, e.g., ffmpeg. Suggestion:
Write a simple CUDA kernel, which “splits” A into the two respective components as REAL arrays and copy those (or
do this on the CPU).

Below are suggested parameters to solve the CGLE, taken from the above cited review paper, so you can compare your
results to images shown there. Use both solvers for each parameter set.

d) Solve the CGLE in 1D. In the output image, the y-coordinate of your final image should be the output time steps
specified by Nstep: Nx = 1024, Lx = 500, Nt = 7680, ∆t = 0.1, Nstep = 10, b = 0.6, c = 1.4.

e) Solve the CGLE in 2D for Nx = Ny = 256 (use powers of 2 for optimal performance) and Lx = Ly = 100 [you can
double these for nicer outputs], Nt = 2000 and ∆t = 0.1 (smaller for finite differences), b = 0, c = 1, and Nstep = 10
(i.e. 200 frames). Initialize A with random numbers in [−0.1, 0.1] (both real and imaginary parts).

f) 2D: c = 0.7, b = −2, Nx = Ny = 1024, Lx = Ly = 500

g) 2D: c = 0.75, b = 2, Nx = Ny = 1024, Lx = Ly = 500

Remarks: For d)-g) use both solvers, if you prefer to solve the CGLE in 3D (instead of 1D and 2D), you can do so and
pick appropriate parameters (In that case you need to use external visualization tools). You are also free to use different
sets of parameters from the above.

D. Presentation

The presentation of the above results should be about 15mins on the due date day, it should contain:

• Discretization scheme and method for both solvers. Point out important details of each solver.

• Your results and briefly explain the behavior.

• For the results of your simulation show differences between solvers - if any, and explain the (potential) reason and
how to avoid these.

• Some brief performance analysis of each solver: Show differences in run-time and, e.g., how many iterations are
needed for the Jacobi solver.

	Complex Ginzburg-Landau equation on GPUs
	Quasi-spectral split-step method
	Jacobi Iteration solver
	Tasks
	Presentation

