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* The complex Ginzburg-Landau equation (CGLE) is
one of the most-studied nonlinear equations in
the physics community.

* |t describes phenomena from nonlinear waves to

second-order phase transitions,
superconductivity, superfluidity and Bose-Einstein

condensation etc.
* Here: overview of phenomena in 1D, 2D and 3D.

Lecture partially based on lectures by Igor Aronson

A. Glatz: Advanced Computational Methods in Condensed Matter Physics - CGLE
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* Vitalii Ginzburg received Nobel Prize in
Physics 2004 for the GL equation

e Alex Abrikosov received Nobel Prize in

Physics 2004 for a particular stationary
solution of the GL equation

A. Glatz: Advanced Computational Methods in Condensed Matter Physics - CGLE



' Definition
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* CGLE describes isotropic extended systems
near the threshold of long-wavelength
supercritical oscillatory instability

* Near the threshold the equation assumes a
universal from

* The equation is written in terms of a
complex amplitude of the most unstable
oscillatory mode

A. Glatz: Advanced Computational Methods in Condensed Matter Physics - CGLE
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' o1 Complex Ginzbdrgtlandawequation

A

[

(;_A=A+(1+ib)AA—(1+ic)\A\2 4
[

* A(x,y,t) —complex amplitude

2
e A= + + : Laplace operator
2 2 2
ox~ dy~ oz

* b —linear dispersion

* ¢ —nonlinear dispersion

A. Glatz: Advanced Computational Methods in Condensed Matter Physics - CGLE
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* B-Ztype chemical reactions (2D, 3D)

* Wide-aperture lasers (2D)

e Electro-convection in liquid crystals (1D)
* Hydrodynamic flows (1D)

* Flames (1D, 2D)

* Micro-organism colonies (2D)

A. Glatz: Advanced Computational Methods in Condensed Matter Physics - CGLE




BeloUsov Zhabotinsky reaction
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Spiral pattern in an oscillatory BZ reaction

The oscillations are very well defined
(Hynne and Soerensen 1998)

* Class of reactions that serve as a classical example of non-equilibrium thermodynamics,
resulting in a nonlinear chemical oscillator

*  Common element in these oscillating systems is the inclusion of bromine and an acid

* These reactions are far from equilibrium and remain so for a significant length of time.

- chemical model of nonequilibrium biological phenomena




more BZ

Ovang + Flesseles, Nature, 379 (1996)

B Z - Reaction f:hm:_}‘ ¢ spirals during aggregation of Dictyostelium
Siegert and Weijer, J. Cell Sci 93, 325 (1989)




7.

s to Condensed Matter

' +11, Conhection

* (real) Ginzburg-Landau Equation (b,c=0)
Superconductivity, superfluidity near T.

* Nonlinear Schrodinger Equations

Superconductivity, superfluidity for T=0, nonlinear optics

(A At AP A
Ot

A. Glatz: Advanced Computational Methods in Condensed Matter Physics - CGLE
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Magnetic field and current are parallel +
inclusions

Vortices moving over a step due to A\ Ipsii A2

. 0.500
applied current -




Numerlcal solutlon

A
%_t = A+ (1+ib)AA — (1 +4c)|A]PA
Methods

* Explicit integration
* Implicit methods
* [terative solvers for parallel applications
(spectral) split step method

First we rewrite the equation in terms of a linear (D) and a non-linear (N) operator:

94 — [D + N]A

with D=1+ (14ib)A; N =—(1+ic)A?

A. Glatz: Advanced Computational Methods in Condensed Matter Physics - CGLE
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' o1 | Pseudbsspectral split step méthod

2. We split the equation and solve the linear and non-linear parts separately

05 g s —(1+ic)|APA=NA
ot
A )
8(’9—151) — (14 (1+ib)A)A= DA

For the non-linear part we can write the formal solution for a small time step h:

An(t+ h,7) = exp [—(1 + ic)]A|2h} A(t,r)
With Fourier transform

~

An(t k) = /d3rAN(t, r) explik - r]

A. Glatz: Advanced Computational Methods in Condensed Matter Physics - CGLE
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Next, we solve the linear step in Fourier space
At + h, k) = exp ([1 — (1 + ib)k?|h) AN (t, k)

Finally the inverse Fourier transform yields A(t+h,r)
The small step in time, h, allows to treat these steps separately, but nevertheless has a

numerical error
One could also solve the initial equation directly, by formally writing %_/t‘ — [f) + NJA
A(t + h,7) =~ exp [h(f) + N)} At,r)

Note: This is not exact, since we commuted the operators D and N. Using, a Baker-
Hausdorff type formula for the commutator (e.g. for the non-linear Schrodinger equation)
One can show that the error is of order h?

A. Glatz: Advanced Computational Methods in Condensed Matter Physics - CGLE
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Finally, we compute the D operator in Fourier space and get the expression

A(t+ dt, 7) = F1[ehA-QH0R" plehN A 1))

If one takes half a step with one operator first, then a full step with the other, and the
second half of the first again, the error of this method is of order h3

Using the FFT for the Fourier transform results in a significantly faster (and more stable)
integration than a finite difference method.

A. Glatz: Advanced Computational Methods in Condensed Matter Physics - CGLE




'Solution: for b=1; c=0
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! Coherent structures

g

v

e Source: group velocities directed outward of the defect <
sources dominate surrounding dynamics
sources come in discrete families (except 1D Nozaki-Bekki holes)
source select the wavenumber of emitted waves

v
A

* Sink (shock) are results of collisions of incoming waves
shocks are determined by b.c. or other sources
shocks come in continuous families and don’t have specific structure

* Phason: group velocity does not change the sign —
bound state of shock and source

Classification of coherent structures from counting arguments
van Saarloos & Hohenberg, Physics D, 1992

A. Glatz: Advanced Computational Methods in Condensed Matter Physics - CGLE




Top Iogmal;ldefect}{s
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1

« Zeros of A=[A/e!? result in topological singularity for phase G=argA

== fﬁ Vdl - topological charge, n ==1
[

e Defects: 1D — holes (phase slips) , 2D —spirals (vortices) , 3D — vortex
lines or filaments

1D hole + shock 2D spiral 3D vortex lines
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Importahce 0 topoioglcal defects (TD)i

i u

e Active TD (sources) dominate surrounding dynamics
e Stability of TD determine transition to chaos

* TD are “elementary excitation” of the medium. One can
express the evolution of the CGLE in terms of a greatly
simplified evolution of the “gas” of interacting TD

e TD can coexist with turbulence and exhibit spatio-
temporal intermittency in 1D, 2D and 3D

A. Glatz: Advanced Computational Methods in Condensed Matter Physics - CGLE
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Core Instabilities of TD
810,28 10 , |
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e Active TD select unique wavenumber and have a fixed
core structure

e Bulk instability (Bl) —emitted waves are unstable
(continuum spectrum)

e Core instability (Cl) : discrete localized mode are unstable

* Transitions to chaos can be related either to Bl or Cl, or
both

A. Glatz: Advanced Computational Methods in Condensed Matter Physics - CGLE
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Examples of Bl and:Cl

1
|

1
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) 2D Spiral Intermittency
2D Spiral Breakup (Bl) (BI+Cl ) , c=-0.4, b=40
b=1, c=-1

3D Vortex stretching
(Cl) c=-0.03, b=50




’

!
A

.
.

Amplitude (or d@a‘fecft) and Phase thaos
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c=1.333, b=-1

* Phase Chaos
[A[=const>0, phase chaotic

 Amplitude Chaos:
amplitude A has zeroes

<
<«

Chate et al, 1994
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Cl-core instability
BFN-Benjamin-Feir line
DC - defect chaos

Instability of holes
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0.0 =
-1.0 , ,'"
/ bi-chaos
—2.00-0: 273\ 2.0 6.0

phase turbulence

8.0

C
amplitude (defect) turbulence

A. Glatz: Advanced Computational Methods in Condensed Matter Physics - CGLE

EH, Al - Eckhaus and absolute
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Phase Diagram of 2D CGLE

Vortex
Liquid

-3.0

*OR-oscillatory range (symmeffr-)y breaking)
oEl — Eckhaus instability for spirals

*BF — Benjamin-Fair limit

eAl- absolute instability for spirals and transition to chaos
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Exponential decay of interaction

eMonotonic range ¢c<0.845 & b=0:
-weak repulsion
irrespectively of charge
-no symmetry breaking
eOscillatory range ¢>0.845:
-oscillatory interaction
vs distance
-meta-stable bound states
-symmetry breaking

eBiktashev, 1989
eAranson, Kramer & Weber, Phys Rev. E, 1993

A. Glatz: Advanced Computational Methods in Condensed Matter Physics - CGLE

gtween two spirals

e v —velocity of the spiral core
e ¢ -phase of the spiral
e X -distance to the shock line

Y
LBE shock line
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'of Bound States
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Oppositely charged- drift Likely charged-rotate

c=1.5,b=0
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'3D vortl

A. Glatz: Advanced Computational Methods in Condensed Matter Physics - CGLE



e Without Cl vortex ring shrinks (Gabbay et al, 1997)
e With Cl vortex rings breaks (Aranson & Bishop, 1997)

time

v

A. Glatz: Advanced Computational Methods in Condensed Matter Physics - CGLE
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e Core Unstable Vortices in Oscillatory range show length
oscillations
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* CGLE describes broad range of phenomena
on qualitative and quantitative levels

* CGLE is a universal model which can be
rigorously derived from various physical,
chemical or biological system

* CGLE is computationally efficient model
and allows for some analytical treatment

A. Glatz: Advanced Computational Methods in Condensed Matter Physics - CGLE




