0
1
0
0
1
0
1
1
0
1
0
0
|
|
1
0
|
1
0
0
1
0
1
1

1
o]
o
1
1
1

0
00
01
10
01
1

|

0

0
1
1
0
1

—

(=) - oo
o T O

01

(=]
o

1

10
01
10
0o
11
10
01

ysics

o

1111010011111100A1001

0
D

1

DlDlDODUDDlDﬂDOOlD
QLA LSRR AR W 8 9. G ot v e

R = C

%&WOL...MI nmv_wmn”ulewl & T

Qe Ornr.ULB(Jw - o @ .Dlﬁn..ﬂ I.,gl -

.Uyul.h..ﬂlﬂoo L..ilw QUUL anOOI

. 4.1101.1.0 llioloo

llll@l..\nltfrv

e Ltéio,?}

O v R Hu\qavpnoeqamonoﬂc.oo —
1._u.nf o S D eRmes G e s,
- O O d DD P

DGOQLULPHOQLAIJOOGIDIO
DDIODIUIDDUIRDDUD

, 0

1

i

0

at!,‘er iP

0
1
0 g
1
Q
' §
é
o‘
1
1
p 0
l

0

1

0
1
§10

ondquse;d

00110100001111010060000

1

C

0
o0
0Q

(7= K P8 S I oy 8L v [v [e |
o

1
0
1
1
0

0

0

01
11
1y
Oo

S
3
Q
B
e
S
g<
S
°
e
S
S
S~
S
O
=
)
O
&
o
S
©
<

0

7, !
(A

Terminology
102 ¢

AR

e What is GPGPU?

— General-Purpose computing on a Graphics Processing
Unit
— Using graphic hardware for non-graphic computations

* What is CUDA?

— Compute Unified Device Architecture

— Software architecture for managing data-parallel
programming

A. Glatz: Advanced Computational Methods in Condensed Matter Physics - CUDA

-

GPU edmputing

|

|

|

4

i
>

Scientific computing on General Purpose Graphics Processing Units (GPUs): a new

paradigm

. Massive parallel computing on one chip

. Shared memory, no data latency

. Easy to use development toolkit: CUDA or OpenCL

. Minimal changes to existing codes needed

. Low power consumption (up to a factor 30 less than
comparable CPU system)

. Low cost per performance (up to 50x improvement)

. speed-up of our simulations: typically, more than

100x

' GPU atchitecture

|
|
!
|

>

- LU e
ol
)OO I U
ODODEEDOEn £l O el

= (NI AT 14 4 O ¥

PCle x16

SATA Bus

Example: Hopper has
132 Multiprocessors,
128 cores each

PolyMorph Engine
Vertox Fotch || Tossetator || viowport
Attribute Setup| | Stream Output

Benclimarl
REVIEWS i

I p—

—))

NE - -

- wed wad wed () =t -

Host
Input Assembler

Thread Execution Manager

Thread Processors hread Processors Thread Processorsl Thread Processors| @ [Thread Processors Thread Processors| i} |Thread Processors

0] 6]
C1E]
(|
C1C]

C1C C10]
C1E] C1E]
C1E] C10
CIC] CIC]

Parallel Data Parallel Data Parallel Data Parallel Data Parallel Data Parallel Data Parallel

ata
Cache (‘ache Cache (‘a;hg (‘a;hg Cache

Load/store

Global Memory

A. Glatz: Advanced Computational Methods in Condensed Matter Physics - CUDA

Me

ory: architecture

;
-

Device

* Constant Memory e
* Texture Memory e

Multiprocessor 1

* Device Memory

e | s

Processor 1 Processor2 **°* Processor M

t t

L —

Unit

—

Bill Dally (Nvidia) in “Life After Moore's Law :

“We have reached the limit of what is possible with one or
more traditional, serial central processing units, or CPUS.
It is past time for the computing industry - and everyone
who relies on it for continued improvements in
productivity, economic growth and social progress - to
take the leap into parallel processing. ”... ‘the CPU scaling
predicted by Moore's Law is now dead. ”

—

Performance
Al]

Comparison of single node
performances:

* board with 8 Nvidia M2090: 10.48 | B> Wi
TFlops ‘ :

 8x AMD HD 6990: 10.16 Tflops

* board with 8 Intel Knights Corner:
7.4 TFlops (prototype)

e Blue Gene/P node card: 435 GFlops

“ AMD FirePro

s
- $10000

A. Glatz: Advanced Computational Methods in Condensed Matter Physics - CUDA

7,

/)

1

|

|

l S
1

|
3
|
(g

A GRU,is 3

aecialized:computer
Al L * ;

AR

e We need to allocate space in the video card’ s
memory for the variables.

 The video card does not have I/O devices, hence we
need to copy the input data from the memory in the
host computer into the memory in the video card,

using the variable allocated in the previous step.
* We need to specify code to execute.

e Copy the results back to the memory in the host
computer.

A. Glatz: Advanced Computational Methods in Condensed Matter Physics - CUDA

cenarlo

Initial state

array

Host Memory GPU (device) Memory

A. Glatz: Advanced Computational Methods in Condensed Matter Physics - CUDA

cenarlo

Memory allocation on the GPU

array array d

Host Memory GPU (device) Memory

A. Glatz: Advanced Computational Methods in Condensed Matter Physics - CUDA

cenarlo

Memory allocation on the GPU

array > array _d

Host Memory GPU (device) Memory

A. Glatz: Advanced Computational Methods in Condensed Matter Physics - CUDA

cenarlo

Execute code on the GPU

GPU MPs
VVVVVVY
array > array _d
Host Memory GPU (device) Memory

A. Glatz: Advanced Computational Methods in Condensed Matter Physics - CUDA

cenarlo

Copy results back to the host memory

array < array_d

Host Memory GPU (device) Memory

A. Glatz: Advanced Computational Methods in Condensed Matter Physics - CUDA

" ntro

CUDA — Compute Unified Device Architecture
Data parallel problems
Great for 1D, 2D, 3D regular grids
Not true SIMD
e SPMT —Single Program Multiple Threads
e SIMT - Single Instruction Multiple Threads

A. Glatz: Advanced Computational Methods in Condensed Matter Physics - CUDA

CUDA Prcgrammlng I\/Iodel

e The GPU is viewed as a compute device that:
- Is a coprocessor to the CPU or host
- Has its own DRAM (device memory)

- Runs many threads in parallel

e Data-parallel portions of an application are executed on the
device as kernels which run in parallel on many threads

e Differences between GPU and CPU threads
- GPU threads are extremely lightweight

- Very little creation overhead
- GPU needs 1000s of threads for full efficiency

- Multi-core CPU needs only a few

A. Glatz: Advanced Computational Methods in Condensed Matter Physics - CUDA

* Host—CPU, main memory
* Device — GPU, GPU memory

e CUDA is like C/C++ with extensions
e Kernel — GPU function written in CUDA
* Source code placed in .cu files
* Nvidia compiler — nvcc — must be used
e Linkin libraries —lcudart, -lcublas, -lcufft

A. Glatz: Advanced Computational Methods in Condensed Matter Physics - CUDA

snvec: Partition codé annd compile far device!

mycode.cu

int main_data;
__shared__ int sdata;

Main() { }

__host__ hfunc () {
int hdata;

<<<gfunc(g,b,m)>>>();

}

__device__ dfunc() {
int ddata;

!

Compiled by native Compiled by nvcc
compiler: gcc, icc, cc compiler

int main_data; __shared__ sdata;

s
t
1§

Host Only

\YEIT VRS

__host__ hfunc () {
int hdata;

<<<gfunc(g,b,m)>>>();

}

Interface

__device__ dfunc() {
int ddata;

Threa@t batéf:hmg grlds and blocks

e Akernelis executed as a grid of Host Devi
evice
thread blocks
Grid 1
- All threads share data memor
Y Kerne — | Block | Block = Block
space " 0,00 (1,00 (2,0)
e Athread block is a batch of threads Block” Block Block
. (0!,’1) (1! 1) “‘ (2! 1)
that can cooperate with each other S =
by: " Grid 2
- Synchronizing their execution Kerne —/—» ‘
12
- For hazard-free shared memory ‘
accesses) ‘
Block (1, 1)
- Efficiently sharing data through a low “
latency shared memory T('(‘,f‘};dl e e T('}'f‘:f;“‘l
e Two threads from two different T(‘;,;g‘)‘d T | Tornd [Threpd | Taread
blOCkS CannOt Cooperate Tllllread Thread | Thread | Thread | Thread

(0,2 | 1,2) | 2, | G2 | 42D

A. Glatz: Advanced Computational Methods in Condensed Matter Physics

- CUDA

%BIocI;(and Thread Ds

')
1 T =

4

e Threads and blocks have IDs

- So each thread can decide what Device
data to work on Grid 1
- Block ID: 1D or 2D (blockldx.x, Block = Block Block
blockldx.y) (0,0) (1,0 (2, 0)
- Thread ID: 1D, 2D, or 3D el e
117 0, 1 1,1 2,1
(threadidx.{x,y,z}) L) [By

e Simplifies memory
addressing when processing
multidimensional data

Block (1, 1)

- Image processing

- Solving PDEs on volumes

functlons

— 55 - 5

cudaError_t returned by most functions

* hopefully: cudaSuccess
camelCase function names

Error checking:
bool cuErr (const char *s="n/a")

{

cudaError t err=cudaGetLastError();
1f (err==cudaSuccess)

return false;
printf ("CUDA error [%s]: %$s\n",s,cudaGetErrorString(err));

return true;

}

A. Glatz: Advanced Computational Methods in Condensed Matter Physics - CUDA

A -
A} N
1 -
e)

{nfoemation
€102 ¢ |

": - -

2 Device

'

» cudaGetDeviceCount(int * device_count)

* Return values
* cudaErrorNoDevice
* cudaErrorinsufficientDriver

» cudaGetDeviceProperties(cudaDeviceProp *, int device)
e cudaDeviceProp — holds device information

A. Glatz: Advanced Computational Methods in Condensed Matter Physics - CUDA

|

L)

T
i
|

'

i

3

i

‘Device'NManagement

L’: . -

[

e cudaGetDevice(int * device)
e cudaSetDevice(int device)
* All memory management, kernels, will be on this device

A. Glatz: Advanced Computational Methods in Condensed Matter Physics - CUDA

H

Memory Management

] i
} ~ | u A
3 : -

e cudaMalloc(void ** devPtr, size_t nbytes)

e Passin a memory pointer which is altered

e CudaErrorMemoryAllocation returned if malloc fails
* cudaFree(void * devPtr)

e cudaErrorinvalidDevicePointer returned on failure
 cudaMemcpy(void * dst, const void * src, size_t count, enum

cudaMemcpyKind kind)

 cudaMemcpyHostToHost

 cudaMemcpyHostToDevice

 cudaMemcpyDeviceToHost

* CudaMemcpyDeviceToDevice

A. Glatz: Advanced Computational Methods in Condensed Matter Physics - CUDA

CUDA Example

A
l.

 (CUDA

 Ketnel functions

#include <stdio.h>
#include <cuda.h>

// Kernel that executes on the CUDA device
__global__ void square_array(float *a, int N)
{
int idx = blockldx.x * blockDim.x + threadldx.x;
if (idx<N) a[idx] = a[idx] * a[idx];
}

// main routine that executes on the host
int main(void)
{float *a_h, *a_d; // Pointer to host & device arrays
const int N = 10; // Number of elements in arrays
size_t size = N * sizeof(float);
a_h = (float *)malloc(size); // Allocate array on host
cudaMalloc((void **) &a_d, size); // Allocate array on device
// Initialize host array and copy it to CUDA device
for (int i=0; i<N; i++) a_h[i] = (float)i;
cudaMemcpy(a_d, a_h, size, cudaMemcpyHostToDevice);
// Do calculation on device:
int block_size = 4;
int n_blocks = N/block_size + (N%block_size == 0 ? 0:1);
square_array <<< n_blocks, block_size >>> (a_d, N);
// Retrieve result from device and store it in host array
cudaMemcpy(a_h, a_d, sizeof(float)*N, cudaMemcpyDeviceToHost);
// Print results
for (int i=0; i<N; i++) printf("%d %f\n", i, a_h[i]);
// Cleanup
free(a_h); cudaFree(a_d);}

¥,

¢ o1 | Built-in variab

lés inkerneb furiction
822 0 | |

!
) K "

threadldx — index number of thread within thread block
blockldx — index number of block within grid
blockDim — size of block dimensions (threads)
gridDim — size of grid dimensions (blocks)
Each variable has x, y, and z fields.
* For 1D partitions use .x
* For 2D partitions use .x and .y
* For 3D partitions use .x, .y, and .z

A. Glatz: Advanced Computational Methods in Condensed Matter Physics - CUDA

 Compute capabilities (hardware)

1.0 11 1.2 1.3 20 21 30 35
G80 G200 Fermi Kepler

Different hardware has different capabilities
 Max threads per block (for single precision)

10 11 12 13 20 21 3.0 3.5

512 1024

* The maximum dimensions of each block are limited to [512,512,64]/[1024,1024,64]
(Compute 1.x/2.x)

Each block cannot consume more than 8k/16k/32k registers total (Compute
1.0,1.1/1.2,1.3/2.x)

Each block cannot consume more than 16kb/48kb of shared memory (Compute 1.x/2.x)

For large 1D arrays, e.g.:
int idx=(blockIdx.y*gridDim.x+tblockIdx.x)*blockDim.x+threadIldx.x;

A. Glatz: Advanced Computational Methods in Condensed Matter Physics - CUDA

|

7

NeWer compute capabllltles

L1

.‘
|
-

|

* Max threads per block 1024 on newer hardware

* Block size very large: up to 23! per direction
 Compute capabilities of some NV GPUs:

12.1
NVIDIA GB10 (DGX Spark)

12.0
NVIDIA RTX PRO x000 Blackwell
GeForce RTX 50xx

10.3
NVIDIA GB300
NVIDIA B300

10.0
NVIDIA GB200
NVIDIA B200

A. Glatz: Advanced Computational Methods in Condensed Matter Physics -

9.0

NVIDIA GH200
NVIDIA H200
NVIDIA H100

8.9

NVIDIA L4

NVIDIA L40

NVIDIA L40S

NVIDIA RTX x000 Ada
GeForce RTX 40xx

8.6

NVIDIA Axx
NVIDIA RTX Ax000
GeForce RTX 30xx

CUDA

8.0
NVIDIA A100
NVIDIA A30

7.5

NVIDIA T4
QUADRO RTX x000
GeForce RTX 20xx

Further Reading:

g~

Nvidia:
— https://developer.nvidia.com/cuda-zone

— http://docs.nvidia.com/cuda
http://developer.download.nvidia.com/books/cuda-by-example/cuda-by-example-

sample.pdf (excerpt, see amazon or google for a pdf)

David Kirk and Wen-mei Hwu manuscript
http://www.toodoc.com/CUDA-textbook-by-David-Kirk-from-NVIDIA-and-Prof-Wen-mei-Hwu-

pdf.html
— Book: “Programming Massively Parallel Processors”

Nice series from Dr. Dobbs Journal by Rob Farber
— http://www.drdobbs.com/parallel/cuda-supercomputing-for-the-masses-
part/207200659

http://www.youtube.com/watch?v=ZrJeYFxpUyQ

A. Glatz: Advanced Computational Methods in Condensed Matter Physics - CUDA

https://developer.nvidia.com/cuda-zone
https://developer.nvidia.com/cuda-zone
https://developer.nvidia.com/cuda-zone
https://developer.nvidia.com/cuda-zone
http://docs.nvidia.com/cuda
http://docs.nvidia.com/cuda
http://developer.download.nvidia.com/books/cuda-by-example/cuda-by-example-sample.pdf
http://developer.download.nvidia.com/books/cuda-by-example/cuda-by-example-sample.pdf
http://developer.download.nvidia.com/books/cuda-by-example/cuda-by-example-sample.pdf
http://developer.download.nvidia.com/books/cuda-by-example/cuda-by-example-sample.pdf
http://developer.download.nvidia.com/books/cuda-by-example/cuda-by-example-sample.pdf
http://developer.download.nvidia.com/books/cuda-by-example/cuda-by-example-sample.pdf
http://developer.download.nvidia.com/books/cuda-by-example/cuda-by-example-sample.pdf
http://developer.download.nvidia.com/books/cuda-by-example/cuda-by-example-sample.pdf
http://developer.download.nvidia.com/books/cuda-by-example/cuda-by-example-sample.pdf
http://developer.download.nvidia.com/books/cuda-by-example/cuda-by-example-sample.pdf
http://developer.download.nvidia.com/books/cuda-by-example/cuda-by-example-sample.pdf
http://developer.download.nvidia.com/books/cuda-by-example/cuda-by-example-sample.pdf
http://www.toodoc.com/CUDA-textbook-by-David-Kirk-from-NVIDIA-and-Prof-Wen-mei-Hwu-pdf.html
http://www.toodoc.com/CUDA-textbook-by-David-Kirk-from-NVIDIA-and-Prof-Wen-mei-Hwu-pdf.html
http://www.toodoc.com/CUDA-textbook-by-David-Kirk-from-NVIDIA-and-Prof-Wen-mei-Hwu-pdf.html
http://www.toodoc.com/CUDA-textbook-by-David-Kirk-from-NVIDIA-and-Prof-Wen-mei-Hwu-pdf.html
http://www.toodoc.com/CUDA-textbook-by-David-Kirk-from-NVIDIA-and-Prof-Wen-mei-Hwu-pdf.html
http://www.toodoc.com/CUDA-textbook-by-David-Kirk-from-NVIDIA-and-Prof-Wen-mei-Hwu-pdf.html
http://www.toodoc.com/CUDA-textbook-by-David-Kirk-from-NVIDIA-and-Prof-Wen-mei-Hwu-pdf.html
http://www.toodoc.com/CUDA-textbook-by-David-Kirk-from-NVIDIA-and-Prof-Wen-mei-Hwu-pdf.html
http://www.toodoc.com/CUDA-textbook-by-David-Kirk-from-NVIDIA-and-Prof-Wen-mei-Hwu-pdf.html
http://www.toodoc.com/CUDA-textbook-by-David-Kirk-from-NVIDIA-and-Prof-Wen-mei-Hwu-pdf.html
http://www.toodoc.com/CUDA-textbook-by-David-Kirk-from-NVIDIA-and-Prof-Wen-mei-Hwu-pdf.html
http://www.toodoc.com/CUDA-textbook-by-David-Kirk-from-NVIDIA-and-Prof-Wen-mei-Hwu-pdf.html
http://www.toodoc.com/CUDA-textbook-by-David-Kirk-from-NVIDIA-and-Prof-Wen-mei-Hwu-pdf.html
http://www.toodoc.com/CUDA-textbook-by-David-Kirk-from-NVIDIA-and-Prof-Wen-mei-Hwu-pdf.html
http://www.toodoc.com/CUDA-textbook-by-David-Kirk-from-NVIDIA-and-Prof-Wen-mei-Hwu-pdf.html
http://www.toodoc.com/CUDA-textbook-by-David-Kirk-from-NVIDIA-and-Prof-Wen-mei-Hwu-pdf.html
http://www.toodoc.com/CUDA-textbook-by-David-Kirk-from-NVIDIA-and-Prof-Wen-mei-Hwu-pdf.html
http://www.toodoc.com/CUDA-textbook-by-David-Kirk-from-NVIDIA-and-Prof-Wen-mei-Hwu-pdf.html
http://www.toodoc.com/CUDA-textbook-by-David-Kirk-from-NVIDIA-and-Prof-Wen-mei-Hwu-pdf.html
http://www.toodoc.com/CUDA-textbook-by-David-Kirk-from-NVIDIA-and-Prof-Wen-mei-Hwu-pdf.html
http://www.toodoc.com/CUDA-textbook-by-David-Kirk-from-NVIDIA-and-Prof-Wen-mei-Hwu-pdf.html
http://www.toodoc.com/CUDA-textbook-by-David-Kirk-from-NVIDIA-and-Prof-Wen-mei-Hwu-pdf.html
http://www.toodoc.com/CUDA-textbook-by-David-Kirk-from-NVIDIA-and-Prof-Wen-mei-Hwu-pdf.html
http://www.toodoc.com/CUDA-textbook-by-David-Kirk-from-NVIDIA-and-Prof-Wen-mei-Hwu-pdf.html
http://www.toodoc.com/CUDA-textbook-by-David-Kirk-from-NVIDIA-and-Prof-Wen-mei-Hwu-pdf.html
http://www.toodoc.com/CUDA-textbook-by-David-Kirk-from-NVIDIA-and-Prof-Wen-mei-Hwu-pdf.html
http://www.drdobbs.com/parallel/cuda-supercomputing-for-the-masses-part/207200659
http://www.drdobbs.com/parallel/cuda-supercomputing-for-the-masses-part/207200659
http://www.drdobbs.com/parallel/cuda-supercomputing-for-the-masses-part/207200659
http://www.drdobbs.com/parallel/cuda-supercomputing-for-the-masses-part/207200659
http://www.drdobbs.com/parallel/cuda-supercomputing-for-the-masses-part/207200659
http://www.drdobbs.com/parallel/cuda-supercomputing-for-the-masses-part/207200659
http://www.drdobbs.com/parallel/cuda-supercomputing-for-the-masses-part/207200659
http://www.drdobbs.com/parallel/cuda-supercomputing-for-the-masses-part/207200659
http://www.drdobbs.com/parallel/cuda-supercomputing-for-the-masses-part/207200659
http://www.drdobbs.com/parallel/cuda-supercomputing-for-the-masses-part/207200659
http://www.drdobbs.com/parallel/cuda-supercomputing-for-the-masses-part/207200659
http://www.drdobbs.com/parallel/cuda-supercomputing-for-the-masses-part/207200659
http://www.youtube.com/watch?v=ZrJeYFxpUyQ
http://www.youtube.com/watch?v=ZrJeYFxpUyQ

