
Lecture 6

Introduction to
GPGPU computing & CUDA

Advanced Computational Methods in
Condensed Matter Physics

Terminology

A. Glatz: Advanced Computational Methods in Condensed Matter Physics - CUDA

• What is GPGPU?
– General-Purpose computing on a Graphics Processing

Unit
– Using graphic hardware for non-graphic computations

• What is CUDA?
– Compute Unified Device Architecture
– Software architecture for managing data-parallel

programming

GPU computing

A. Glatz: Advanced Computational Methods in Condensed Matter Physics - CUDA

Scientific computing on General Purpose Graphics Processing Units (GPUs): a new
paradigm

• Massive parallel computing on one chip
• Shared memory, no data latency
• Easy to use development toolkit: CUDA or OpenCL
• Minimal changes to existing codes needed
• Low power consumption (up to a factor 30 less than

comparable CPU system)
• Low cost per performance (up to 50x improvement)

• speed-up of our simulations: typically, more than
100x

GPU architecture

A. Glatz: Advanced Computational Methods in Condensed Matter Physics - CUDA

16896
(Nvidia H100)

Example: Hopper has
132 Multiprocessors,
128 cores each

12-72

…

A. Glatz: Advanced Computational Methods in Condensed Matter Physics - CUDA

Memory architecture

A. Glatz: Advanced Computational Methods in Condensed Matter Physics - CUDA

• Constant Memory
• Texture Memory
• Device Memory

A. Glatz: Advanced Computational Methods in Condensed Matter Physics - CUDA

Bill Dally (Nvidia) in “Life After Moore's Law”:

“We have reached the limit of what is possible with one or
more traditional, serial central processing units, or CPUs.
It is past time for the computing industry - and everyone
who relies on it for continued improvements in
productivity, economic growth and social progress - to
take the leap into parallel processing.” … “the CPU scaling
predicted by Moore's Law is now dead.”

Performance

A. Glatz: Advanced Computational Methods in Condensed Matter Physics - CUDA

Comparison of single node
performances:

• board with 8 Nvidia M2090: 10.48
TFlops

• 8x AMD HD 6990: 10.16 Tflops
• board with 8 Intel Knights Corner:

7.4 TFlops (prototype)

• Blue Gene/P node card: 435 GFlops AMD FirePro
S10000

Nvidia Tesla K40

A GPU is a specialized computer

A. Glatz: Advanced Computational Methods in Condensed Matter Physics - CUDA

• We need to allocate space in the video card’s
memory for the variables.

• The video card does not have I/O devices, hence we
need to copy the input data from the memory in the
host computer into the memory in the video card,
using the variable allocated in the previous step.

• We need to specify code to execute.
• Copy the results back to the memory in the host

computer.

A typical scenario

A. Glatz: Advanced Computational Methods in Condensed Matter Physics - CUDA

Host Memory GPU (device) Memory

array

Initial state

A typical scenario

A. Glatz: Advanced Computational Methods in Condensed Matter Physics - CUDA

Host Memory GPU (device) Memory

array

Memory allocation on the GPU

array_d

A typical scenario

A. Glatz: Advanced Computational Methods in Condensed Matter Physics - CUDA

Host Memory GPU (device) Memory

array

Memory allocation on the GPU

array_d

A typical scenario

A. Glatz: Advanced Computational Methods in Condensed Matter Physics - CUDA

Host Memory GPU (device) Memory

array

Execute code on the GPU

array_d

GPU MPs

A typical scenario

A. Glatz: Advanced Computational Methods in Condensed Matter Physics - CUDA

Host Memory GPU (device) Memory

array

Copy results back to the host memory

array_d

Introduction to CUDA

A. Glatz: Advanced Computational Methods in Condensed Matter Physics - CUDA

• CUDA – Compute Unified Device Architecture
• Data parallel problems
• Great for 1D, 2D, 3D regular grids
• Not true SIMD
• SPMT – Single Program Multiple Threads
• SIMT – Single Instruction Multiple Threads

CUDA Programming Model:
A Highly Multithreaded Coprocessor

A. Glatz: Advanced Computational Methods in Condensed Matter Physics - CUDA

• The GPU is viewed as a compute device that:
- Is a coprocessor to the CPU or host
- Has its own DRAM (device memory)
- Runs many threads in parallel

• Data-parallel portions of an application are executed on the
device as kernels which run in parallel on many threads

• Differences between GPU and CPU threads
- GPU threads are extremely lightweight

- Very little creation overhead

- GPU needs 1000s of threads for full efficiency
- Multi-core CPU needs only a few

Getting started

A. Glatz: Advanced Computational Methods in Condensed Matter Physics - CUDA

• Host – CPU, main memory
• Device – GPU, GPU memory

• CUDA is like C/C++ with extensions
• Kernel – GPU function written in CUDA
• Source code placed in .cu files
• Nvidia compiler – nvcc – must be used
• Link in libraries –lcudart, -lcublas, -lcufft

nvcc: Partition code and compile for device

A. Glatz: Advanced Computational Methods in Condensed Matter Physics - CUDA

mycode.cu

__device__ dfunc() {
 int ddata;
}

__global__ gfunc() {
 int gdata;
}

Main() { }
__host__ hfunc () {
 int hdata;
 <<<gfunc(g,b,m)>>>();
}

In
te

rfa
ce

H
os

t O
nl

y

int main_data;
__shared__ int sdata;

Main() {}
__host__ hfunc () {
 int hdata;
<<<gfunc(g,b,m)>>>();
}

__global__ gfunc() {
 int gdata;
}

Compiled by native
compiler: gcc, icc, cc

__shared__ sdata;

__device__ dfunc() {
 int ddata;
}

Compiled by nvcc
compiler

int main_data;

Threat batching: grids and blocks

A. Glatz: Advanced Computational Methods in Condensed Matter Physics - CUDA

• A kernel is executed as a grid of
thread blocks
- All threads share data memory

space

• A thread block is a batch of threads
that can cooperate with each other
by:

- Synchronizing their execution
- For hazard-free shared memory

accesses
- Efficiently sharing data through a low

latency shared memory

• Two threads from two different
blocks cannot cooperate

Host

Kerne
l 1

Kerne
l 2

Device

Grid 1

Block
(0, 0)

Block
(1, 0)

Block
(2, 0)

Block
(0, 1)

Block
(1, 1)

Block
(2, 1)

Grid 2

Block (1, 1)

Thread
(0, 1)

Thread
(1, 1)

Thread
(2, 1)

Thread
(3, 1)

Thread
(4, 1)

Thread
(0, 2)

Thread
(1, 2)

Thread
(2, 2)

Thread
(3, 2)

Thread
(4, 2)

Thread
(0, 0)

Thread
(1, 0)

Thread
(2, 0)

Thread
(3, 0)

Thread
(4, 0)

Block and Thread IDs

A. Glatz: Advanced Computational Methods in Condensed Matter Physics - CUDA

• Threads and blocks have IDs
- So each thread can decide what

data to work on
- Block ID: 1D or 2D (blockIdx.x,

blockIdx.y)
- Thread ID: 1D, 2D, or 3D

(threadIdx.{x,y,z})

• Simplifies memory
addressing when processing
multidimensional data
- Image processing
- Solving PDEs on volumes
- …

Device

Grid 1

Block
(0, 0)

Block
(1, 0)

Block
(2, 0)

Block
(0, 1)

Block
(1, 1)

Block
(2, 1)

Block (1, 1)

Thread
(0, 1)

Thread
(1, 1)

Thread
(2, 1)

Thread
(3, 1)

Thread
(4, 1)

Thread
(0, 2)

Thread
(1, 2)

Thread
(2, 2)

Thread
(3, 2)

Thread
(4, 2)

Thread
(0, 0)

Thread
(1, 0)

Thread
(2, 0)

Thread
(3, 0)

Thread
(4, 0)

CUDA functions

A. Glatz: Advanced Computational Methods in Condensed Matter Physics - CUDA

• cudaError_t returned by most functions
• hopefully: cudaSuccess

• camelCase function names

Error checking:
bool cuErr(const char *s="n/a")
{
 cudaError_t err=cudaGetLastError();
 if(err==cudaSuccess)
 return false;
 printf("CUDA error [%s]: %s\n",s,cudaGetErrorString(err));
 return true;
}

Device Information

A. Glatz: Advanced Computational Methods in Condensed Matter Physics - CUDA

• cudaGetDeviceCount(int * device_count)
• Return values
• cudaErrorNoDevice
• cudaErrorInsufficientDriver

• cudaGetDeviceProperties(cudaDeviceProp *, int device)
• cudaDeviceProp – holds device information

Device Management

A. Glatz: Advanced Computational Methods in Condensed Matter Physics - CUDA

• cudaGetDevice(int * device)
• cudaSetDevice(int device)
• All memory management, kernels, will be on this device

Memory Management

A. Glatz: Advanced Computational Methods in Condensed Matter Physics - CUDA

• cudaMalloc(void ** devPtr, size_t nbytes)
• Pass in a memory pointer which is altered
• CudaErrorMemoryAllocation returned if malloc fails

• cudaFree(void * devPtr)
• cudaErrorInvalidDevicePointer returned on failure

• cudaMemcpy(void * dst, const void * src, size_t count, enum
cudaMemcpyKind kind)
• cudaMemcpyHostToHost
• cudaMemcpyHostToDevice
• cudaMemcpyDeviceToHost
• CudaMemcpyDeviceToDevice

CUDA Kernel functions

A. Glatz: Advanced Computational Methods in Condensed Matter Physics - CUDA

CUDA Example

1. #include <stdio.h>
2. #include <cuda.h>
3.
4. // Kernel that executes on the CUDA device
5. __global__ void square_array(float *a, int N)
6. {
7. int idx = blockIdx.x * blockDim.x + threadIdx.x;
8. if (idx<N) a[idx] = a[idx] * a[idx];
9. }
10.
11. // main routine that executes on the host
12. int main(void)
13. {float *a_h, *a_d; // Pointer to host & device arrays
14. const int N = 10; // Number of elements in arrays
15. size_t size = N * sizeof(float);
16. a_h = (float *)malloc(size); // Allocate array on host
17. cudaMalloc((void **) &a_d, size); // Allocate array on device
18. // Initialize host array and copy it to CUDA device
19. for (int i=0; i<N; i++) a_h[i] = (float)i;
20. cudaMemcpy(a_d, a_h, size, cudaMemcpyHostToDevice);
21. // Do calculation on device:
22. int block_size = 4;
23. int n_blocks = N/block_size + (N%block_size == 0 ? 0:1);
24. square_array <<< n_blocks, block_size >>> (a_d, N);
25. // Retrieve result from device and store it in host array
26. cudaMemcpy(a_h, a_d, sizeof(float)*N, cudaMemcpyDeviceToHost);
27. // Print results
28. for (int i=0; i<N; i++) printf("%d %f\n", i, a_h[i]);
29. // Cleanup
30. free(a_h); cudaFree(a_d);}

Built-in variables in kernel function

A. Glatz: Advanced Computational Methods in Condensed Matter Physics - CUDA

• threadIdx – index number of thread within thread block
• blockIdx – index number of block within grid
• blockDim – size of block dimensions (threads)
• gridDim – size of grid dimensions (blocks)
• Each variable has x, y, and z fields.
• For 1D partitions use .x
• For 2D partitions use .x and .y
• For 3D partitions use .x, .y, and .z

Computing limitations

A. Glatz: Advanced Computational Methods in Condensed Matter Physics - CUDA

• Compute capabilities (hardware)

• Different hardware has different capabilities
• Max threads per block (for single precision)

• The maximum dimensions of each block are limited to [512,512,64]/[1024,1024,64]
(Compute 1.x/2.x)

• Each block cannot consume more than 8k/16k/32k registers total (Compute
1.0,1.1/1.2,1.3/2.x)

• Each block cannot consume more than 16kb/48kb of shared memory (Compute 1.x/2.x)
• For large 1D arrays, e.g.:

int idx=(blockIdx.y*gridDim.x+blockIdx.x)*blockDim.x+threadIdx.x;

Computing limitations

Compute capabilities (hardware)

Gaea has 2.0 hardware

 Different hardware has different capabilities

1.0 1.1 1.2 1.3 2.0 2.1 3.0 3.5

G80 G200 Fermi Kepler

Thread block limitations

 Max threads per block

 Max threads per SM

 Max blocks per SM - 8

1.0 1.1 1.2 1.3 2.0 2.1 3.0 3.5

512 1024

1.0 1.1 1.2 1.3 2.0 2.1 3.0 3.5

768 1024 1536 2048

Newer compute capabilities

A. Glatz: Advanced Computational Methods in Condensed Matter Physics - CUDA

• Max threads per block 1024 on newer hardware
• Block size very large: up to 231 per direction
• Compute capabilities of some NV GPUs:

12.1
NVIDIA GB10 (DGX Spark)

12.0
NVIDIA RTX PRO x000 Blackwell
GeForce RTX 50xx

10.3
NVIDIA GB300
NVIDIA B300

10.0
NVIDIA GB200
NVIDIA B200

9.0
NVIDIA GH200
NVIDIA H200
NVIDIA H100

8.9
NVIDIA L4
NVIDIA L40
NVIDIA L40S
NVIDIA RTX x000 Ada
GeForce RTX 40xx

8.6
NVIDIA Axx
NVIDIA RTX Ax000
GeForce RTX 30xx

8.0
NVIDIA A100
NVIDIA A30

7.5
NVIDIA T4
QUADRO RTX x000
GeForce RTX 20xx

Further Reading

A. Glatz: Advanced Computational Methods in Condensed Matter Physics - CUDA

• Nvidia:
– https://developer.nvidia.com/cuda-zone
– http://docs.nvidia.com/cuda
– http://developer.download.nvidia.com/books/cuda-by-example/cuda-by-example-

sample.pdf (excerpt, see amazon or google for a pdf)

• David Kirk and Wen-mei Hwu manuscript
– http://www.toodoc.com/CUDA-textbook-by-David-Kirk-from-NVIDIA-and-Prof-Wen-mei-Hwu-

pdf.html
– Book: “Programming Massively Parallel Processors”

• Nice series from Dr. Dobbs Journal by Rob Farber
– http://www.drdobbs.com/parallel/cuda-supercomputing-for-the-masses-

part/207200659

• http://www.youtube.com/watch?v=ZrJeYFxpUyQ

https://developer.nvidia.com/cuda-zone
https://developer.nvidia.com/cuda-zone
https://developer.nvidia.com/cuda-zone
https://developer.nvidia.com/cuda-zone
http://docs.nvidia.com/cuda
http://docs.nvidia.com/cuda
http://developer.download.nvidia.com/books/cuda-by-example/cuda-by-example-sample.pdf
http://developer.download.nvidia.com/books/cuda-by-example/cuda-by-example-sample.pdf
http://developer.download.nvidia.com/books/cuda-by-example/cuda-by-example-sample.pdf
http://developer.download.nvidia.com/books/cuda-by-example/cuda-by-example-sample.pdf
http://developer.download.nvidia.com/books/cuda-by-example/cuda-by-example-sample.pdf
http://developer.download.nvidia.com/books/cuda-by-example/cuda-by-example-sample.pdf
http://developer.download.nvidia.com/books/cuda-by-example/cuda-by-example-sample.pdf
http://developer.download.nvidia.com/books/cuda-by-example/cuda-by-example-sample.pdf
http://developer.download.nvidia.com/books/cuda-by-example/cuda-by-example-sample.pdf
http://developer.download.nvidia.com/books/cuda-by-example/cuda-by-example-sample.pdf
http://developer.download.nvidia.com/books/cuda-by-example/cuda-by-example-sample.pdf
http://developer.download.nvidia.com/books/cuda-by-example/cuda-by-example-sample.pdf
http://www.toodoc.com/CUDA-textbook-by-David-Kirk-from-NVIDIA-and-Prof-Wen-mei-Hwu-pdf.html
http://www.toodoc.com/CUDA-textbook-by-David-Kirk-from-NVIDIA-and-Prof-Wen-mei-Hwu-pdf.html
http://www.toodoc.com/CUDA-textbook-by-David-Kirk-from-NVIDIA-and-Prof-Wen-mei-Hwu-pdf.html
http://www.toodoc.com/CUDA-textbook-by-David-Kirk-from-NVIDIA-and-Prof-Wen-mei-Hwu-pdf.html
http://www.toodoc.com/CUDA-textbook-by-David-Kirk-from-NVIDIA-and-Prof-Wen-mei-Hwu-pdf.html
http://www.toodoc.com/CUDA-textbook-by-David-Kirk-from-NVIDIA-and-Prof-Wen-mei-Hwu-pdf.html
http://www.toodoc.com/CUDA-textbook-by-David-Kirk-from-NVIDIA-and-Prof-Wen-mei-Hwu-pdf.html
http://www.toodoc.com/CUDA-textbook-by-David-Kirk-from-NVIDIA-and-Prof-Wen-mei-Hwu-pdf.html
http://www.toodoc.com/CUDA-textbook-by-David-Kirk-from-NVIDIA-and-Prof-Wen-mei-Hwu-pdf.html
http://www.toodoc.com/CUDA-textbook-by-David-Kirk-from-NVIDIA-and-Prof-Wen-mei-Hwu-pdf.html
http://www.toodoc.com/CUDA-textbook-by-David-Kirk-from-NVIDIA-and-Prof-Wen-mei-Hwu-pdf.html
http://www.toodoc.com/CUDA-textbook-by-David-Kirk-from-NVIDIA-and-Prof-Wen-mei-Hwu-pdf.html
http://www.toodoc.com/CUDA-textbook-by-David-Kirk-from-NVIDIA-and-Prof-Wen-mei-Hwu-pdf.html
http://www.toodoc.com/CUDA-textbook-by-David-Kirk-from-NVIDIA-and-Prof-Wen-mei-Hwu-pdf.html
http://www.toodoc.com/CUDA-textbook-by-David-Kirk-from-NVIDIA-and-Prof-Wen-mei-Hwu-pdf.html
http://www.toodoc.com/CUDA-textbook-by-David-Kirk-from-NVIDIA-and-Prof-Wen-mei-Hwu-pdf.html
http://www.toodoc.com/CUDA-textbook-by-David-Kirk-from-NVIDIA-and-Prof-Wen-mei-Hwu-pdf.html
http://www.toodoc.com/CUDA-textbook-by-David-Kirk-from-NVIDIA-and-Prof-Wen-mei-Hwu-pdf.html
http://www.toodoc.com/CUDA-textbook-by-David-Kirk-from-NVIDIA-and-Prof-Wen-mei-Hwu-pdf.html
http://www.toodoc.com/CUDA-textbook-by-David-Kirk-from-NVIDIA-and-Prof-Wen-mei-Hwu-pdf.html
http://www.toodoc.com/CUDA-textbook-by-David-Kirk-from-NVIDIA-and-Prof-Wen-mei-Hwu-pdf.html
http://www.toodoc.com/CUDA-textbook-by-David-Kirk-from-NVIDIA-and-Prof-Wen-mei-Hwu-pdf.html
http://www.toodoc.com/CUDA-textbook-by-David-Kirk-from-NVIDIA-and-Prof-Wen-mei-Hwu-pdf.html
http://www.toodoc.com/CUDA-textbook-by-David-Kirk-from-NVIDIA-and-Prof-Wen-mei-Hwu-pdf.html
http://www.toodoc.com/CUDA-textbook-by-David-Kirk-from-NVIDIA-and-Prof-Wen-mei-Hwu-pdf.html
http://www.toodoc.com/CUDA-textbook-by-David-Kirk-from-NVIDIA-and-Prof-Wen-mei-Hwu-pdf.html
http://www.drdobbs.com/parallel/cuda-supercomputing-for-the-masses-part/207200659
http://www.drdobbs.com/parallel/cuda-supercomputing-for-the-masses-part/207200659
http://www.drdobbs.com/parallel/cuda-supercomputing-for-the-masses-part/207200659
http://www.drdobbs.com/parallel/cuda-supercomputing-for-the-masses-part/207200659
http://www.drdobbs.com/parallel/cuda-supercomputing-for-the-masses-part/207200659
http://www.drdobbs.com/parallel/cuda-supercomputing-for-the-masses-part/207200659
http://www.drdobbs.com/parallel/cuda-supercomputing-for-the-masses-part/207200659
http://www.drdobbs.com/parallel/cuda-supercomputing-for-the-masses-part/207200659
http://www.drdobbs.com/parallel/cuda-supercomputing-for-the-masses-part/207200659
http://www.drdobbs.com/parallel/cuda-supercomputing-for-the-masses-part/207200659
http://www.drdobbs.com/parallel/cuda-supercomputing-for-the-masses-part/207200659
http://www.drdobbs.com/parallel/cuda-supercomputing-for-the-masses-part/207200659
http://www.youtube.com/watch?v=ZrJeYFxpUyQ
http://www.youtube.com/watch?v=ZrJeYFxpUyQ

