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Data Analysis

e Given a set of data points (measurements)
{ X1, X5, ooy Xy}
then the mean value or expected value E[x] of quantity
X IS

bin center (Ng=# of bins)

X

— Unbinned average more accurate l
, : I -

due to rounding R R R R R R

— 1 N N
x=<x>=M=E[x]=_Exi E[X]:sz'pz‘,
N =1 i=1
* For data 1 Npg 18—""'|||._
ATV 145 E
(x) N, El “
— where n. is bin count and x; is ";: :

QN & o




“Spread” of data

* Variance var(x) is the expected value of the squared
deviation from the mean p = E[x], or var(x)=E[(x-1)?]

_ %E(x -2, (x)+ (x)')
%zxz —%2<x>2xi +%<x>2 21
= <x2> — 2<x>2 + <x>2

* Standard deviation g =V (x) = \/%E(xi_ <x>)2 _ \/<x2>_<x>2

[
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Corrected standard deviation

An unbiased estimator for the variance is given by applying Bessel's
correction, using N — 1 instead of N to yield the unbiased sample variance,
denoted s?:

N

s% = ﬁ . (z; —T)°.

1=1
* i.e., we multiplied var(x)=c2 by the factor N/(N-1).
* This corrected variance should be used when the mean, u, is unknown.
 The number N-1 corresponds to the number of degrees of freedom
* Remark: when calculation the corrected standard deviation, s, one

introduces another bias due to the concave nature of the square root.

(there is no universal correction formula for that)



Covariance

* Given 2 variables x,y and a dataset consisting of pairs of
numbers

{ (x,y1), (X2,¥2), - (XnyYn)

* Definition of <x>, <y>, G,, 6, as usual
* |In addition, any dependence between x,y described by the

covariance cov(x,y) = %E(x" —<x>)(y,- —<)’>)

=(x=(xN-(y))
= (%)= {xX)

e The dimensionless
correlation coefficient is defined as € [-L+1]
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orrelation example

p=0 p=0.1 p=0.5
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* Concept of covariance, correlation is easily extended to
arbitrary number of variables

* sothat V. =cov(x,,x )takes the form of
a h x n symmetric matrix

* This is called the covariance matrix, or error matrix
e Similarly the correlation matrix becomes

> Vy=p;00,

A. Glatz: Advanced Computational Methods in Condensed Matter Physics - Introduction



Distributions

2
The Gaussian or Normal Distribution: 1 _(x_“)
its mean and standard deviation nix|= e 20

A \/EO

<
c 1

* 1o is roughly the half-
width at half-maximum
of the distribution,
probability of a 05| - oo,
measurement falling in
+0is 68.3%

* In1+20:95.4%
* In1+30:99.3%

U=<x> X
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Central Limit Theorem

 Why are errors usually Gaussian?

* The says

— If you take the sum X of N independent measurements x;,
each taken from a distribution of mean m,, a variance var;=c;?,

the distribution for x
<X> = Z/Ui

var(X) = Evarl. = Eaf

—  Small print: tails converge very slowly in CLT, be careful in assuming Gaussian shape beyond 2 o

A. Glatz: Advanced Computational Methods in Condensed Matter Physics - Introduction



T T T T T T T T g

01 02 03 04 05 06 07 08 09

FT T T T T T T T T TTT

N=2

Wl FETH FEE1 FRRE FTRE FUR1 FRTE FERE FRTH Pl
02 04 06 08 1 12 14 16 18 2
T TTTTTTTTT T

= TTTT T

T I T T T T T

a

n L
10 1

2

CLT

< 5000 numbers taken at random from a uniform
distribution between [0,1].

— Mean =1/,, Variance =1/,

< 5000 numbers, each the sum of 2 random
numbers, i.e. X = X;+X,.

— Triangular shape
< Same for 3 numbers,

X=X, + X, + X3

< Same for 12 numbers, overlaid curve is exact
Gaussian distribution

A. Glatz: Advanced Computational Methods in Condensed Matter Physics - Introduction
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Binomial distribution

* Simple experiment — Drawing marbles from a bowl
— Bowl with marbles, fraction p are black, others are white
— Draw N marbles from bowl, put marble back after each drawing
— Distribution of R black marbles in drawn sample:

Probability of a Number of equivalent
specific outcome permutations for that
e.g. ‘BBBWBWW’ outcome

A A

Binomial distribution

00 0.5 1 1.5 2 2.5 3 3.5 < 4.5 5

A. Glatz: Advanced Computational Methods in Condensed Matter Physics - Introduction
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Properties of the binomial dist.

* Mean: <r>=n-p

e Variance: var(r)=np(l-p) = o= \/”lp(l—P)

p=0.1, N=4 p=0.5, N=4 p=0.9, N=4

p=0.1, N=1000 p=0.5, N=1000 p=0.9, N=1000

0 10 20
A Glatz: Ad\ . o e e ey e



Poisson distribution

 Sometimes we don’t know the equivalent of the number
of drawings
— Example: Geiger counter
— Sharp events occurring in a (time) continuum

* What distribution to we expect in measurement over fixed
amount of time?
— Divide time interval A in n finite chunks,
— Take binomial formula with p=A/n and let n=>0

A A, n!
P(r;Al/n,n)=—A-—)" ‘. .
n n rl(n—r)! '\ lim,,—"—=n,
\ rl(n—r)!
/ lim (1—1)"—’ =e
n

V4 n—>0

»

<Poisson distribution

A. Glatz: Advanced Computational Methods in Condensed Matter Physics - Introduction 13



Poisson dist.
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P(r;A) =

* Mean, variance: -
A — -7

e Convolution of 2 Poisson distributions is also a Poisson
distribution with A =A_+A,

Ty Ar—Ty
)y

r(r—ry!
_ o Vats) (4 +4) < ! A i Ag -
r! —(r=r)\ A, +4; ) (4, +4,

gt Mt ) [ A A r
r! Ai+A, A+

A. Glatz: Advanced Computational Methods in Condensed Matter Physics - Introduction
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* Look at Poisson distribution in limit of large N

. Take log, substitute, r= A +x,
Zanduse In(r!)=rinr—r+In27r

»
In(P(r;A))=—-A+rindA—(rinr—r)—In~2r
A+ r{lnl —In(A(1+ %))} +(A+x)~ 27

X x2 “:‘ In(l1+z)~z—-2"/2
~x—(A—x) —+— |-1In(27A)
( )(A YE (274) ,

2

~— X _In(2722)
Take exp 22

(approximation reasonable for N>10)

A. Glatz: Advanced Computational Methods in Condensed Matter Physics - Introduction
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Y? test

e A Chi-Square test (x?)is a statistical test used to determine
whether your experimentally observed results are consistent
with your hypothesis (goodness of fit).

* Usually refers to Pearson’s chi-squared test

* The value of the test-statistic is

N 2

* Where x; is an measured data point, E; an expected (theoretical)
value (asserted by the null hypothesis), and x? Pearson's
cumulative test statistic, which asymptotically approaches a x?
distribution (a distribution of the sum of k random normal
numbers squared.).

A. Glatz: Advanced Computational Methods in Condensed Matter Physics - Introduction 17



2 distribution

Fk X 2
k
0 5 k:l ]..0"
o — k=2
— k=3 0.8t
04+ k4 /k 1
— k=6 1 =
0.31 11, 0.6 . j—9
— k=3
0.2¢ 0.4t  hed
— k=6
0.1 1 i
0.2 kg
0.0 ¢ t t t t t . } * | | | | |
T 0.0 . - . . . . . .
0 1 2 3 4 5 6 7 8 0 1 9 3 4 5 6 7 g 7

Probability density function (pdf) Cumulative distribution function (CDF)

p(k/2)=1 ,—z/2

x > 0; k «x
/20 (&) 7 — 27 2
flas k)= 2T(5) . F(a; k):%2—22>zp 2
0, otherwise. I'(5) 22
\I\//Iefam: k o where y(s,t) is the lower incomplete
ariance:

Gamma function and P(s,t) is the
regularized Gamma function
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Data/Curve fitting

e Often, we have data sets from experimental/observational
measurements
— Typically, find that the data/dependent variable/output varies...

— As the control parameter/independent variable/input varies.
Examples:

 Classic gravity drop: location changes with time
* Pressure varies with depth

* Wind speed varies with time

* Temperature varies with location

e Scientific method: Given data identify underlying
relationship

* Process known as curve fitting:

A. Glatz: Advanced Computational Methods in Condensed Matter Physics - Introduction
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Interpolation vs. Regression

* Distinctly different approaches depending on the quality

of the data
* Consider the pictures below:

/
extrapolate e
/
interpolate extrapolate
/
Pretty confident:

there is a polynomial relationship
Little/no scatter
Want to find an expression
that passes exactly through all the points

Not discussed here!

A. Glatz: Advanced Computational Methods in Condensed Matter Physics - Introduction

Unsure what the relationship is
Clear scatter
Want to find an expression
that captures the trend:
minimize some measure of the error
Of all the points...




Linear Regression

* Fitting a straight line to a

set of paired e Error

observations:
(X], y]); (XZ, yz),...,(xn, yn) v A

Measurement
e ’
y; : measured value
e .error Yi — Gg — G1%; O
i
o®

ag A K = ——— Line equation
y=ap+a;X

Yi=ayta;x;te

€ = Ji=Qy-a;X;

Y

Sl

=

a; : slope

A, . intercept
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Choosing Criteria For a “Best Fit”

 Minimize the sum of the residual errors
for all available data?

n n
Zei — Z(yi —d, _alxi)
i=1 i=1

e Sum of the absolute values?

Inadequate!

n n Inadequate!

Ze. =Zy.—a0—a1xl.

i i
i=1 i=1

* How about minimizing the distance that
an individual point falls from the line?

This does not work either!

.‘? b

Midpoint

£
~

-
="
-
-
-




e Best strategy is to minimize the sum of the squares of the

residuals between the measured-y and the y calculated with

the linear model:

n
2 : 2

Sl" — ei VA
i=1 Measurement

e e @

n
. 2
o Z (yi,measured - yi,model)

i=l1

S, = Z(yi —d, _‘11-"})2
i=1

Tl AR T e e —

e

Error

o e e

~

* Yields a unique line for a given set of data
* Need to compute a,and a; such that S, is minimized!

A. Glatz: Advanced Computational Methods in Condensed Matter Physics - Introduction
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Least-Squares Fit of a Straight Line

n n
. . . . . 2 . 2
Minimize error: S, = E e = E (y, —a,—a,x;)

oS,

g—_zz(yi_ao_alxi)zo = Zyi_zao_zalxizo
2 0-a, )]0 = Tyx-Yax-Yax =0
a

Since Zao = na,

(1) nay + (Y% =3,

2 (Fx ey +(X 2 =Sy,
anyl Znyl Mean values

Ny () _——

using (1), a, can be expressedas a, =y —a,x

} Linear equations for a, and a,




Goodness of the fit

The spread of data

(a) around the mean
(b) around the best-fit line

(a)

Notice the improvement
in the error due to linear
(b) regression

S, = Sum of the squares of residuals around the regression line
S, = total sum of the squares around the mean

(S;—S,) quantifies the improvement or error reduction due to describing
data 1n terms of a straight line rather than as an average value.

1 : correlation coefficient 1"2 _ Sr — S,, St — Z(y, — )_/)2

12 : coefficient of determination S

For a perfect fit S=0 and r=r’=1

t

S, = Z(yi —da, _alxi)z
i=1

signifies that the line explains 100 percent of the variability of the data.
For r=r’=0 = S.=S, => the fit represents no improvement

A. Glatz: Advanced Computational Methods in Condensed Matter Physics - Introduction
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Linearization of Nonlinear Relationships

¥

Saturation
growth-rate Eq.

Power Eq.

Exponential Eq.

-V

(b) e

c N

9 =

B 3

ks 2

- d T b

b W

IE
— log y |

Slope = b,
logtx

Intercept = log a,
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Polynomial Regression

* Some data is poorly represented by a straight line. A curve (polynomial) may be
better suited to fit the data. The least squares method can be extended to fit the

data to higher order polynomials.
* As an example let us consider a second order polynomial to fit the data points:

. 2

n n
I , _ 2 _ 242
Minimize error: S, = E e = E (y,—a,—a,x;, —a,x;)
i=1 i=1

oS 2

r —_9 —a —ax, —a.,x;)=0
aao Z(yl 0 17 2 z)
5. = _22 Xy —a, —ax, _azxiz) =0
oa,
aS” — _2in2(yi _ao _alxi _a2xi2) — 0

oa,



* To fit the data to an mt" order polynomial, we need to solve the following
system of linear equations ((m+1) equations with (m+1) unknowns)

n le. lem __ao_ Zyi
le. lez Zx;nﬂ a, inyi

m m+1 m+m m
DI RN Yo PRt
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Multiple Linear Regression

* A useful extension of linear regression is the case where y is a linear function of two
or more independent variables. For example:

y=a,+a;X;+a,x,+e

* For this 2-dimensional case, the regression line becomes a plane as shown in the
figure below.

_______ L
/




2

Example (2-vars): Minimize error: S, = Z e = Z (y; —a, —a,x,; —a,x,;)

na, +(Zx1i)al +(Zx2i)az - Zyi
(lei )ao + (lezz )"1 + (leixZi )az - leiyi
(Zsz)a +(Zx11x21)a +(Zx21)a Zszyz

n lei szz ao ZJ’i
2
lei lei lei‘x2i a '
2
_szi Z‘xlix2i szi L% ZXZiyi
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Curve fitting summary

Use existing software for plotting and data analysis like:

Mathematica, Maple, MathCad
(Excel)

MatLab, scilab, octave

R

OriginPro, IGOR Pro, Labplot, gtiplot
Grace

gnuplot, MayaVi, ParaView

... (see also http://en.wikipedia.org/wiki/List_of graphing software,
http://en.wikipedia.org/wiki/List of statistical packages,

http://en.wikipedia.org/wiki/List of numerical analysis software,

http://en.wikipedia.org/wiki/List_of computer algebra systems )

A. Glatz: Advanced Computational Methods in Condensed Matter Physics - Introduction
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What is random?

Definition of random from Merriam-Webster:

Main Entry: random

Function: adjective

Date: 1565

1 a : lacking a definite plan, purpose, or pattern b : made, done, or
chosen at random <read random passages from the book>

2 a : relating to, having, or being elements or events with definite
probability of occurrence <random processes> b : being or relating to
a set or to an element of a set each of whose elements has equal
probability of occurrence <a random sample>; also : characterized by
procedures designed to obtain such sets or elements <random
sampling>



Random numbers

 Utopia

— True random generators: exhibiting “true” randomness, such as the

time between “tics” from a Geiger counter exposed to a radioactive
element

* Hard to find
* Hard to proof
* Complex implementation

* Reality

— Pseudo random number generators

* Sequences having the appearance of randomness, but nevertheless
exhibiting a specific, repeatable pattern.

* numbers calculated by a computer through a deterministic process,
cannot, by definition, be random

“ Any one who consider arithmetical methods of producing random digits is,
of course, in a state of sin.”

John von Neumann [1951]



(Pseudo) Random number generators

(RNG)

* Desirable Attributes:
e Uniformity
* Independence
 Efficiency
* Replicability
* Long Cycle Length

* Needed for:
* Numerical Algorithms
* Simulations
 “Monte-Carlo” Methods
* encryption

* Each random number x; is an independent
sample drawn from a continuous uniform

distribution between 0 and 1

pdf:

1 Ay * L} el A SEV %
29" LV " " 15 .
Wi SR8 )
P i L
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- - [T
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': L™

s L Y
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0.8
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1
¥

Example: calculation of 7
using MC

f(x) =+




PDF:

£(x)

o

X

1
Elx]= [ ydy=[y"/2],=1/2

var(x) = [ 01 y'dy-[E[x]]

=y’ /3], -(1/2) =1/3-1/4
=1/12
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RNG algorithms

Remember:

* Given knowledge of the algorithm used to create the
numbers and its internal state (i.e. seed), you can predict
all the numbers returned by subsequent calls to the
algorithm, whereas with genuinely random numbers,
knowledge of one number or an arbitrarily long sequence
of numbers is of no use whatsoever in predicting the next
number to be generated.

 Computer-generated "random" numbers are more
properly referred to as pseudorandom numbers, and
pseudorandom sequences of such numbers.



Mid-Square “generator”

MidSquare
Example:
X, = 7182 (seed)
X,2 =51581124
= R, =(0.5811
X,2 =(5811)%=33767721
= R, =0.7677
etc.



Problem

Note: Cannot choose a seed that guarantees that the
sequence will not degenerate and will have a long
period. Also, zeros, once they appear, are carried in
subsequent numbers.

Exl: X, =5197 (seed) X;= 27008809
2> R, =0.0088 X =00007744
> R, =0.0077

Ex2: X, =4500 (seed) X ;= 20250000

R, =0.2500  X:=06250000

->
> R, =0.2500



Linear congruential generators

e Linear Congruential Method:

— Basic generator
X,+1 = (@ X,+¢) (mod m),

— With modulus m = 0, multiplier m>a>0, increment 0<c<m

— Most natural choice for m is one that equals to the
capacity of a computer integer type used.

— m = 2 (binary machine), where b is the number of bits in
the integer type.

— m = 109 (decimal machine), where d is the number of
digits in the integer type.

— X, is called the seed



The appearance of randomness is provided by performing
modulo arithmetic or remaindering

With X, determined, we generate a corresponding real

number as follows:

R,=X./float(m) or R =X, /float(m+1)

When dividing by m, the values, R, are then distributed
on [0,1).

We desire uniformity, where any particular R, is just as
likely to appear as any other R, and the average of the R,
is very close to 0.5.

Again: the next result depends upon only the previous
integer — This is a characteristic of linear, congruential
generators which minimizes storage requirements, but at
the same time, imposes restrictions on the period.



LCGs

e Usedin -
— rand () functionin C/ C++ (libc)
— Java.util.Random

 The period is at most m

* For c=0 LCGs are also called multiplicative
congruential random number generator



Advantages/Disadvantages

LCGs:

fast and require minimal memory (typically 32 or 64 bits) to retain state
valuable for simulating multiple independent streams

should not be used for applications where high-quality randomness is
critical

not suitable for a Monte Carlo simulation because of the serial correlation
(among other things)

should also not be used for cryptographic applications

LCGs tend to exhibit some severe defects:

* Forinstance, if an LCG is used to choose points in an n-dimensional
space, the points will lie on, at most, m¥/" hyperplanes (Marsaglia's
Theorem, developed by George Marsaglia). This is due to serial
correlation between successive values of the sequence x.. The spectral
test, which is a simple test of an LCG's quality, is based on this fact.



LCG

3D points generated using a congruential RNG

Points fall on planes Ideal random points



Other RNGs

MT — Mersenne Twister — fast, negligible serial correlation,
good for MC, cycle = 2199371

Blum Blum Shub (slow, not suitable for simulations, but for
cryptography)
ANSI X9.17
— Based on triple-DES
Capstone/Fortezza
DSA (Digital Signature Specification)
Yarrow-160
Fortuna

And many others



Tests for RNGs

1. Frequency test. Uses the Kolmogorov-Smirnov or the chi-square
test to compare the distribution of the set of numbers generated
to a uniform distribution.

2. Runs test. Tests the runs up and down or the runs above and
below the mean by comparing the actual values to expected
values. The statistic for comparison is the chi-square.

3. Autocorrelation test. Tests the correlation between numbers and
compares the sample correlation to the expected correlation of
Zero.

4. Gap test. Counts the number of digits that appear between
repetitions of a particular digit and then uses the Kolmogorov-
Smirnov test to compare with the expected number of gaps.

5. Poker test. Treats numbers grouped together as a poker hand.
Then the hands obtained are compared to what is expected using

the chi-square test.



* In testing for uniformity, the hypotheses are as follows:
Ho: x; ~ U[0,1]
H,: x; = U[0,1]
The null hypothesis, H,, reads that the numbers are
distributed uniformly on the interval [0,1].
* In testing for independence, the hypotheses are as follows;
Hy: x; ~ independently
Hi: x; # independently

This null hypothesis, H,, reads that the numbers are
independent. Failure to reject the null hypothesis means that
no evidence of dependence has been detected on the basis
of this test. This does not imply that further testing of the
generator for independence is unnecessary.



x? tests

* Measure how well the presumed distribution (usually uniform) is
represented.

e Algorithm for the test:

— Divide the whole interval, within which the random number would be
into finite number of bins (class intervals). Assume they have same size.

— Count the number of random numbers within each interval and calculate

the “expected” number of observations [(number of random numbers
used) / (number of class intervals) for uniform intervals].

— Calculate: x?=X(i=1,m)(observed; — expected;)? / (expected,)

— The value of x?determines if the numbers generated represent a chosen
distribution, by looking up in a table, some critical values of x*



Run Tests (Up and Down)

Consider the 40 numbers; both the Kolmogorov-Smirnov and Chi-square would
indicate that the numbers are uniformly distributed. But, not so.

0.08 0.09 0.23 0.29 0.42 0.55 0.58 0.72 0.89 0.91
0.11 0.16 0.18 0.31 0.41 0.53 0.71 0.73 0.74 0.84
0.02 0.09 0.30 0.32 0.45 0.47 0.69 0.74 0.91 0.95
0.12 0.13 0.29 0.36 0.38 0.54 0.68 0.86 0.88 0.91

The number and length of runs should approximately follow a normal distribution
with appropriate means and variances.



Poker test

* based on the frequency with which certain digits are

repeated.
Example:
0.255 0.577 0.331 0.414 0.828 0.909
Note: a pair of like digits appear in each number generated.
In 3-digit numbers, there are only 3 possibilities:
* p(3 different digits) =
p(2nd diff. from 15t) * p(3™ diff. from 15t & 2"9)
=(0.9) (0.8) =0.72
* p(3 like digits) =
p(2nd digit same as 1%t) * p(3@ digit same as 1°t)
=(0.1) (0.1) =0.01
* p(exactly one pair)=1-0.72-0.01=0.27



Example

A sequence of 1000 three-digit numbers has been generated and an
analysis indicates that 680 have three different digits, 289 contain
exactly one pair of like digits, and 31 contain three like digits. Based
on the poker test, are these numbers independent?

Observed  Expected (O, - E;)?

Combination, Frequency, Frequency, -------—----
Three different digits 680 720 2.24
Three like digits 31 10 44.10
Exactly one pair 289 270 1.33
1000 1000 47.65

The appropriate degrees of freedom are one less than the number of
class intervals. Since %2y s, , = 5.99 < 47.65, the independence of the
numbers is rejected on the basis of this test. (0.05 is the level of significance)



More on tests...

DIEHARD - http://stat.fsu.edu/pub/diehard/
NIST - http://csrs.nist.gov/rng
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http://csep1.phy.ornl.gov/mc/mc.html
http://www.chem.unl.edu/zeng/joy/mclab/mcintro.html

e Scatter Plots

e Random Walk

Qualitative tests

Plot pairs of random numbers.
Clumps of numbers, gaps and patterns
are easily visible.

Divide the range of the RNG into equal
intervals (e.g. 4 intervals for a random
walk in two dimensions)
Generate a number, if number falls in:

* First interval, increment X

* Second interval, increment Y

* Third interval, decrement X

* Fourth interval, decrement Y
Generate t steps for a random walk for n walks
Calculate the means squared distance reached
Plot this distance against time
A plot for several values of t and distance should roughly be linear-
otherwise the random numbers are not correctly distributed.
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Physical (True?) RNG

* Radioactive decay
e Air Turbulence in disk drives

 Lavalamp
e.g., https://en.wikipedia.org/wiki/Lavarand

 http://www.random.org

* Intel 8xx chipset

* Timing of keystrokes when a user enters a password.

 Measurement of timing skew between two systems timers:

— A hardware timer
— A software timer
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http://www.random.org/
http://www.random.org/

More RNG resources

True Random Numbers
http://www.fourmilab.ch/hotbits/
http://www.robertnz.net/hwrng.htm
https://gquantumnumbers.anu.edu.au/

Pseudo-random Number Generator documentation
https://en.cppreference.com/w/cpp/numeric/random.html
https://docs.python.org/3/library/random.html

Online PRNGs
https://leventozturk.com/engineering/random/
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http://mathworld.wolfram.com/QuasirandomSequence.html
http://www.agner.org/random/
http://www.agner.org/random/
https://docs.python.org/3/library/random.html
https://docs.python.org/3/library/random.html
https://leventozturk.com/engineering/random/

Next lecture:

* Introduction to CUDA
* Complex Ginzburg Landau equation
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