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Data Analysis
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• Given a set of unbinned data points (measurements)
    { x1, x2, …, xN}
then the mean value or expected value E[x] of quantity 
x is

• For binned data

– where ni is bin count and xi is 
bin center (NB=# of bins)

– Unbinned average more accurate 
due to rounding
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“Spread” of data 
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• Variance var(x) is the expected value of the squared 
deviation from the mean μ = E[x], or var(x)=E[(x-μ)2]

• Standard deviation
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Corrected standard deviation
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An unbiased estimator for the variance is given by applying Bessel's 
correction, using N − 1 instead of N to yield the unbiased sample variance, 
denoted s2:

• i.e., we multiplied var(x)=¾2 by the factor N/(N-1).
• This corrected variance should be used when the mean, µ, is unknown.
• The number N-1 corresponds to the number of degrees of freedom
• Remark: when calculation the corrected standard deviation, s, one 

introduces another bias due to the concave nature of the square root. 
(there is no universal correction formula for that)



Covariance
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• Given 2 variables x,y and a dataset consisting of pairs of 
numbers

 { (x1,y1),  (x2,y2), … (xN,yN) }

• Definition of <x>, <y>, sx, sy as usual
• In addition, any dependence between x,y described by the 

covariance

• The dimensionless 
correlation coefficient is defined as

cov(x, y) = 1
N

(xi − x )(yi − y )
i
∑

= (x − x )(y− y )

= xy − x y
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Correlation example
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r = 0 r = 0.1 r = 0.5

r = -0.7 r = -0.9 r = 0.99
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• Concept of covariance, correlation is easily extended to 
arbitrary number of variables

• so that                                 takes the form of 
a n x n symmetric matrix

• This is called the covariance matrix, or error matrix
• Similarly the correlation matrix becomes

cov(x(i), x( j ) ) = x(i)x( j ) − x(i) x( j )
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Distributions
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n(
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e
− x−µ( )2

2σ 2
The Gaussian or Normal Distribution:
its mean and standard deviation

• 1s is roughly the half- 
width at half-maximum 
of the distribution, 
probability of a 
measurement falling in 
±¾ is 68.3%

• In ±2¾: 95.4%

• In ±3¾: 99.3%



Central Limit Theorem
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• Why are errors usually Gaussian?

• The Central Limit Theorem says
– If you take the sum X of N independent measurements xi, 

each taken from a distribution of mean mi, a variance vari=si
2,

the distribution for x

(a) has expectation value

(b) has variance

(c ) becomes Gaussian as N à ¥

– Small print: tails converge very slowly in CLT, be careful in assuming Gaussian shape beyond 2s
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CLT
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¬ 5000 numbers taken at random from a uniform 
distribution between [0,1].
– Mean = 1/2, Variance = 1/12

¬ 5000 numbers, each the sum of 2 random 
numbers, i.e. X = x1+x2.
– Triangular shape

¬ Same for 3 numbers, 
X = x1 + x2 + x3

¬ Same for 12 numbers, overlaid curve is exact 
Gaussian distribution

N=1

N=2

N=3

N=12



Binomial distribution
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• Simple experiment – Drawing marbles from a bowl
– Bowl with marbles,  fraction p are black, others are white
– Draw N marbles from bowl, put marble back after each drawing
– Distribution of R black marbles in drawn sample:

Binomial distribution
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Properties of the binomial dist.
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• Mean:

• Variance:  

!"# ⋅=

var(r) = np(1− p) ⇒ σ = np(1− p)
p=0.1, N=4 p=0.5, N=4 p=0.9, N=4

p=0.1, N=1000 p=0.5, N=1000 p=0.9, N=1000



Poisson distribution
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• Sometimes we don’t know the equivalent of the number 
of drawings
– Example: Geiger counter
– Sharp events occurring in a (time) continuum

• What distribution to we expect in measurement over fixed 
amount of time?
– Divide time interval l in n finite chunks,
– Take binomial formula with p=l/n  and let nà¥
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Poisson dist.
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l=0.1 l=0.5 l=1

l=2 l=5 l=10

l=20 l=50 l=200
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• Mean, variance:

• Convolution of 2 Poisson distributions is also a Poisson 
distribution with lab=la+lb

r = λ

var(r) = λ ⇒ σ = λ
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…
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• Look at Poisson distribution in limit of large N



Â2 test

A. Glatz: Advanced Computational Methods in Condensed Matter Physics - Introduction 17

• A Chi-Square test (Â2) is a statistical test used to determine 
whether your experimentally observed results are consistent 
with your hypothesis (goodness of fit).

• Usually refers to Pearson's chi-squared test
• The value of the test-statistic is

• Where xi is an measured data point, Ei an expected (theoretical) 
value (asserted by the null hypothesis), and Â2 Pearson's 
cumulative test statistic, which asymptotically approaches a Â2  
distribution (a distribution of the sum of k random normal 
numbers squared.).



Â2 distribution
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Probability density function (pdf) Cumulative distribution function (CDF)

where γ(s,t) is the lower incomplete 
Gamma function and P(s,t) is the 
regularized Gamma function

Mean: k
Variance: 2k



Data/Curve fitting
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• Often, we have data sets from experimental/observational 
measurements
– Typically, find that the data/dependent variable/output varies…
– As the control parameter/independent variable/input varies. 

Examples:
• Classic gravity drop: location changes with time
• Pressure varies with depth
• Wind speed varies with time
• Temperature varies with location 

• Scientific method: Given data identify underlying 
relationship

• Process known as curve fitting:



Interpolation vs. Regression 
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• Distinctly different approaches depending on the quality 
of the data

• Consider the pictures below:

Pretty confident:
 there is a polynomial relationship

Little/no scatter
Want to find an expression

that passes exactly through all the points 

interpolate

extrapolate

extrapolate

Unsure what  the relationship is
Clear scatter

Want to find an expression
that captures the trend:

 minimize some measure of the error 
Of all the points… 

Not discussed here!



Linear Regression
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• Fitting a straight line to a 
 set of paired 

observations: 
 (x1, y1), (x2, y2),…,(xn, yn)

yi  : measured value      
e : error

        yi = a0 + a1 xi + e
 

      e  =  yi - a0 - a1 xi

 a1  : slope

 a0  : intercept

e    Error

Line equation
y = a0 + a1 x 



Choosing Criteria For a “Best Fit”
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•Minimize the sum of the residual errors 
for all available data?

                                              Inadequate! 
                                                        (see èèè)

• Sum of the absolute values?
         Inadequate! 
         (see èèè)

•How about minimizing the distance that 
an individual point falls from the line?

 This does not work either!   see èèè
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• Best strategy is to minimize the sum of the squares of the 
residuals between the measured-y and the y calculated with 
the linear model:

• Yields a unique line for a given set of data
• Need to compute a0 and a1 such that Sr is minimized!
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Least-Squares Fit of a Straight Line
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Goodness of the fit
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• Sr = Sum of the squares of residuals around the regression line
• St = total sum of the squares around the mean
• (St – Sr) quantifies the improvement or error reduction due to describing 

data in terms of a straight line rather than as an average value.

• For a perfect fit    Sr=0  and  r = r2 = 1 
 signifies that the line explains 100 percent of the variability of the data.
• For  r = r2 = 0  è   Sr=St   è the fit represents no improvement

!

"!

#
##" −

=!
r : correlation coefficient

r2 : coefficient of determination

The spread of data 
  

(a) around the mean
(b) around the best-fit line 

Notice the improvement 
in the error due to linear 
regression
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Linearization of Nonlinear Relationships
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Exponential Eq.

!"# βα=

β=!"#$%

α!"#"$%&'%($ =

Saturation 
growth-rate Eq.

Power Eq.



Polynomial Regression
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• Some data is poorly represented by a straight line. A curve (polynomial) may be 
better suited to fit the data. The least squares method can be extended to fit the 
data to higher order polynomials. 

• As an example let us consider a second order polynomial to fit the data points:
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…
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• To fit the data to an mth order polynomial, we need to solve the following 
system of linear equations ((m+1) equations with (m+1) unknowns)



Multiple Linear Regression
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• A useful extension of linear regression is the case where y is a linear function of two 
or more independent variables. For example:

   y = ao + a1x1 + a2x2 + e
• For this 2-dimensional case, the regression line becomes a plane as shown in the 

figure below. 



…
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Curve fitting summary 
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Use existing software for plotting and data analysis like:
• Mathematica, Maple, MathCad
• (Excel)
• MatLab, scilab, octave
• R
• OriginPro, IGOR Pro, Labplot, qtiplot
• Grace
• gnuplot, MayaVi, ParaView

… (see also http://en.wikipedia.org/wiki/List_of_graphing_software , 
http://en.wikipedia.org/wiki/List_of_statistical_packages , 
http://en.wikipedia.org/wiki/List_of_numerical_analysis_software , 
http://en.wikipedia.org/wiki/List_of_computer_algebra_systems )

http://en.wikipedia.org/wiki/List_of_graphing_software
http://en.wikipedia.org/wiki/List_of_statistical_packages
http://en.wikipedia.org/wiki/List_of_numerical_analysis_software
http://en.wikipedia.org/wiki/List_of_computer_algebra_systems


What is random?
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• Definition of random from Merriam-Webster:
• Main Entry: random

Function: adjective
Date: 1565
1 a : lacking a definite plan, purpose, or pattern b : made, done, or 
chosen at random <read random passages from the book>
2 a : relating to, having, or being elements or events with definite 
probability of occurrence <random processes> b : being or relating to 
a set or to an element of a set each of whose elements has equal 
probability of occurrence <a random sample>; also : characterized by 
procedures designed to obtain such sets or elements <random 
sampling>



Random numbers
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• Utopia
– True random generators: exhibiting “true” randomness, such as the 

time between “tics” from a Geiger counter exposed to a radioactive 
element
• Hard to find
• Hard to proof
• Complex implementation

• Reality
– Pseudo random number generators

• Sequences having the appearance of randomness, but nevertheless 
exhibiting a specific, repeatable pattern.

• numbers calculated by a computer through a deterministic process, 
cannot, by definition, be random

“Any one who consider arithmetical methods of producing random digits is, 
of course, in a state of sin.” 

     John von Neumann [1951]



(Pseudo) Random number generators 
(RNG)
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• Desirable Attributes:
• Uniformity                    
• Independence
• Efficiency                     
• Replicability
• Long Cycle Length

• Needed for:
• Numerical Algorithms
• Simulations
• “Monte-Carlo” Methods
• encryption

• Each random number xi is an independent 
sample drawn from a continuous uniform 
distribution between 0 and 1

Example: calculation of ¼ 
using MC

ì1 , 0 £ x £ 1
pdf:   f(x) = í
 î0 , else 



…
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E[x]= y
0

1
∫ dy = [y2 / 2]0

1 =1/ 2

var(x) = y2
0

1
∫ dy−[E[x]]2

= [y3 / 3]0
1 − (1 / 2)2 =1/ 3−1/ 4

=1/12

x
f(x
)

0

1

PDF:



RNG algorithms
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Remember:
• Given knowledge of the algorithm used to create the 

numbers and its internal state (i.e. seed), you can predict 
all the numbers returned by subsequent calls to the 
algorithm, whereas with genuinely random numbers, 
knowledge of one number or an arbitrarily long sequence 
of numbers is of no use whatsoever in predicting the next 
number to be generated. 

• Computer-generated "random" numbers are more 
properly referred to as pseudorandom numbers, and 
pseudorandom sequences of such numbers.



Mid-Square “generator”
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MidSquare
Example:
    X0  = 7182 (seed)
    X0

2  = 51581124
è    R1  = 0.5811
  X1

2  = (5811) 2 = 33767721
è  R2  = 0.7677 
  etc.



Problem
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Note: Cannot choose a seed that guarantees that the 
sequence will not degenerate and will have a long 
period. Also, zeros, once they appear, are carried in 
subsequent numbers.
Ex1:      X0  = 5197 (seed)     = 27008809

è  R1  = 0.0088       = 00007744
è  R2  = 0.0077

Ex2:       X0  = 4500 (seed)     = 20250000
è R1  = 0.2500       = 06250000
è  R2  = 0.2500

!
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Linear congruential generators
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• Linear Congruential Method:
– Basic generator

Xn+1 = (a Xn+c) (mod m), 
– With modulus m ³ 0, multiplier  m>a>0, increment 0≤c<m
– Most natural choice for m is one that equals to the 

capacity of a computer integer type used.
– m = 2b (binary machine), where b is the number of bits in 

the integer type.
– m = 10d (decimal machine), where d is the number of 

digits in the integer type.
– X0 is called the seed



…
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• The appearance of randomness is provided by performing 
modulo arithmetic or remaindering

• With Xn determined, we generate a corresponding real 
number as follows: 
Rn=Xn/float(m) or Rn=Xn/float(m+1)

• When dividing by m, the values, Rn, are then distributed 
on [0,1). 

• We desire uniformity, where any particular  Rn is just as 
likely to appear as any other Rn, and the average of the Rn 
is very close to 0.5. 

• Again: the next result depends upon only the previous 
integer – This is a characteristic of linear, congruential 
generators which minimizes storage requirements, but at 
the same time, imposes restrictions on the period. 



LCGs

A. Glatz: Advanced Computational Methods in Condensed Matter Physics - Introduction 41

• Used in -
– rand() function in C / C++ (libc)
– Java.util.Random
– ..

• The period is at most m
• For c=0 LCGs are also called multiplicative 
congruential random number generator



Advantages/Disadvantages
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LCGs:
• fast and require minimal memory (typically 32 or 64 bits) to retain state
• valuable for simulating multiple independent streams
• should not be used for applications where high-quality randomness is 

critical
• not suitable for a Monte Carlo simulation because of the serial correlation 

(among other things)
• should also not be used for cryptographic applications
• LCGs tend to exhibit some severe defects:

• For instance, if an LCG is used to choose points in an n-dimensional 
space, the points will lie on, at most, m1/n hyperplanes (Marsaglia's 
Theorem, developed by George Marsaglia). This is due to serial 
correlation between successive values of the sequence xi. The spectral 
test, which is a simple test of an LCG's quality, is based on this fact.



LCG
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• 3D points generated using a congruential RNG

Points fall on planes Ideal random points



Other RNGs
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• MT – Mersenne Twister – fast, negligible serial correlation, 
good for MC, cycle = 219937-1

• Blum Blum Shub (slow, not suitable for simulations, but for 
cryptography)

• ANSI X9.17 
– Based on triple-DES

• Capstone/Fortezza
• DSA (Digital Signature Specification)
• Yarrow-160
• Fortuna

• And many others



Tests for RNGs
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1. Frequency test. Uses the Kolmogorov-Smirnov or the chi-square 
test to compare the distribution of the set of numbers generated 
to a uniform distribution.

2. Runs test. Tests the runs up and down or the runs above and 
below the mean by comparing the actual values to expected 
values. The statistic for comparison is the chi-square.

3. Autocorrelation test. Tests the correlation between numbers and 
compares the sample correlation to the expected correlation of 
zero.

4. Gap test. Counts the number of digits that appear between 
repetitions of a particular digit and then uses the Kolmogorov-
Smirnov test to compare with the expected number of gaps.

5. Poker test. Treats numbers grouped together as a poker hand. 
Then the hands obtained are compared to what is expected using 
the chi-square test.
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• In testing for uniformity, the hypotheses are as follows: 
  H0: xi ~ U[0,1]
  H1: xi ¹ U[0,1]
The null hypothesis, H0, reads that the numbers are 
distributed uniformly on the interval [0,1].
• In testing for independence, the hypotheses are as follows;
  H0: xi ~ independently
  H1: xi ¹ independently
This null hypothesis, H0, reads that the numbers are 
independent. Failure to reject the null hypothesis means that 
no evidence of dependence has been detected on the basis 
of this test. This does not imply that further testing of the 
generator for independence is unnecessary. 



Â2 tests
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• Measure how well the presumed distribution (usually uniform) is 
represented. 

• Algorithm for the test:
– Divide the whole interval, within which the random number would be 

into finite number of bins (class intervals). Assume they have same size.
– Count the number of random numbers within each interval and calculate 

the “expected” number of observations [(number of random numbers 
used) / (number of class intervals) for uniform intervals].

– Calculate: Â2 = Σ(i=1,m)(observedi – expectedi)2 / (expectedi)
– The value of Â2 determines if the numbers generated represent a chosen 

distribution, by looking up in a table, some critical values of Â2.



Run Tests (Up and Down)
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Consider the 40 numbers; both the Kolmogorov-Smirnov and Chi-square would 
indicate that the numbers are uniformly distributed. But, not so.
 
 0.08   0.09   0.23   0.29   0.42   0.55   0.58   0.72   0.89   0.91
 0.11   0.16   0.18   0.31   0.41   0.53   0.71   0.73   0.74   0.84
 0.02   0.09   0.30   0.32   0.45   0.47   0.69   0.74   0.91   0.95
 0.12   0.13   0.29   0.36   0.38   0.54   0.68   0.86   0.88   0.91

The number and length of runs should approximately follow a normal distribution 
with appropriate means and variances.



Poker test
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• based on the frequency with which certain digits are 
repeated.
Example:
 0.255  0.577  0.331  0.414  0.828  0.909
Note: a pair of like digits appear in each number generated.
In 3-digit numbers, there are only 3 possibilities:
• p(3 different digits) =

    p(2nd diff. from 1st) * p(3rd diff. from 1st & 2nd)
= (0.9) (0.8) = 0.72

• p(3 like digits) =
    p(2nd digit same as 1st) * p(3rd digit same as 1st)
= (0.1) (0.1) = 0.01

• p(exactly one pair) = 1 - 0.72 - 0.01 = 0.27
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Example
 A sequence of 1000 three-digit numbers has been generated and an 

analysis indicates that 680 have three different digits, 289 contain 
exactly one pair of like digits, and 31 contain three like digits. Based 
on the poker test, are these numbers independent?

       Observed Expected (Oi - Ei)2

Combination,   Frequency, Frequency, -----------
  i            Oi         Ei        Ei

   Three different digits      680       720       2.24
   Three like digits          31         10     44.10
   Exactly one pair            289       270       1.33               ------      ------     -------
              1000      1000     47.65

The appropriate degrees of freedom are one less than the number of 
class intervals. Since c2

0.05, 2 = 5.99 < 47.65, the independence of the 
numbers is rejected on the basis of this test. (0.05 is the level of significance)



More on tests…
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DIEHARD - http://stat.fsu.edu/pub/diehard/
NIST - http://csrs.nist.gov/rng

http://csep1.phy.ornl.gov/mc/mc.html
http://www.chem.unl.edu/zeng/joy/mclab/mcintro.html


Qualitative tests
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• Scatter Plots
• Plot pairs of random numbers.
• Clumps of numbers, gaps and patterns 

are easily visible.

• Random Walk
• Divide the range of the RNG into equal 

intervals (e.g. 4 intervals for a random 
walk in two dimensions)

• Generate a number, if number falls in:
• First interval, increment X
• Second interval, increment Y
• Third interval, decrement X
• Fourth interval, decrement Y

• Generate t steps for a random walk for n walks
• Calculate the means squared distance reached
• Plot this distance against time
• A plot for several values of t and distance should roughly be linear- 

otherwise the random numbers are not correctly distributed.



Physical (True?) RNG
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• Radioactive decay 
• Air Turbulence in disk drives
• Lava lamp

e.g., https://en.wikipedia.org/wiki/Lavarand
• http://www.random.org 
• Intel 8xx chipset 

• Timing of keystrokes when a user enters a password.
• Measurement of timing skew between two systems timers:

– A hardware timer
– A software timer

http://www.random.org/
http://www.random.org/


More RNG resources
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True Random Numbers
http://www.fourmilab.ch/hotbits/
http://www.robertnz.net/hwrng.htm
https://quantumnumbers.anu.edu.au/

Pseudo-random Number Generator documentation
https://en.cppreference.com/w/cpp/numeric/random.html
https://docs.python.org/3/library/random.html

Online PRNGs
https://leventozturk.com/engineering/random/

http://mathworld.wolfram.com/QuasirandomSequence.html
http://www.agner.org/random/
http://www.agner.org/random/
https://docs.python.org/3/library/random.html
https://docs.python.org/3/library/random.html
https://leventozturk.com/engineering/random/


Next lecture:
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• Introduction to CUDA
• Complex Ginzburg Landau equation


