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Numerical Differentiation

e The mathematical definition: _

* Graphically, as the /\

tangential line: N\

X XxX+h

 Numerically, we can not calculate the limit as h goes to

zero, so we need to approximate it.
* Apply directly for a non-zero h leads to the slope of the

secant curve.
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 This is called Forward Differences and can be derived
using Taylor’ s Series:
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Reminder: errors

Truncation Error: introduced in the solution by
the approximation of the derivative

Round-off Error: introduced in the
computation by the finite number of digits
used by the computer

Solving differential equations is done in

multiple steps. Therefore we also have:

* Local Error: from each term of the equation

e Global Error: from the accumulation of local
error



Truncation errors

Let f(x) = a+e, and f(x+h) = a+f.

Then, as h approaches zero, e<<a and f<<a.
With limited precision on our computer, our
representation of f(x) = a = f(x+h).

We can easily get a random round-off bit as
the most significant digit in the subtraction.
Dividing by h, leads to a very wrong answer for

fx).



Error trade-off

* Using a smaller step size reduces truncation error.
* However, it increases the round-off error.
* Trade off/diminishing returns occurs: Always think and test!

Point of
Total error e
Log error diminishing

returns

Round off error

Truncation error

Log step size
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“Backward” Differentiation

* This forward differentiation formula favors (or biases
towards) the right-hand side of the curve.

 Why not use the left?

e This leads to the
Backward Differences formula:

x-h x x+h
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Central difference

Can we do better?

e Let saverage the two:

H_/ H_J

Forward difference  Backward difference

This is called the Central Difference formula.

* This formula does not seem very good.
— It does not follow the calculus formula.
— |t takes the slope of the secant with width 2h.
— The actual point we are interested in is not even evaluated.
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e But, is this any better?

* Use the Taylor seriesto  f(x+h)= f(x)+f'(X)h+f”(x)h—22+f”’(§)§_3'
examine the error: ; h}-
Sx=h)y= )= f@h+ [0~ )

subtracting
Sx+h)= f(x=h)=2f(x)h+ (f"'(é")% + f'"(g)%)

e The central differences formula has much better

convergence. f’(x)=f(x+h)2_hf(x_h)—%f"’(;)hz,CE[X—h,X‘Fh]

* Approaches the derivative as h? goes to zero!!
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But:

Still have truncation error problem.

Consider the case of: f(x)=ﬁ
[x+h‘_[x—h‘
Build a table with fien =t
smaller values of h. at x =1,h = 0.000333,with 6 significant digits
Py = 00100033-0.0099966 _ ) o 0.
0.000666666

Relative error:
\0.01-0.010050\ )

What about large
0.01

values of h for this
function?

5%




Richardson Extrapolation

 Canone do better?
* |s my choice of h a good one?

* Let’s start with the Taylor series of the difference:

* Assuming the higher derivatives exist:

* Richardson Extrapolation examines the operator ¢(h) as a function of h,
which approximates f”(x) to O(4?) .
* Forh—0:
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* Using these two formula’ s, we can come up with another
estimate for the derivative that cancels out the h? terms.

new estimate difference between old
and new estimates

* If his small (h<<1), then h* goes to zero much faster than h?.
e Can we cancel out the h® term?
— Yes, by using h/4 to estimate the derivative.
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Generalization

* Let us define the
central differences
operator for different
values of h:

L =limg(h) = /(%)

e £ =¢(§)+§[¢(§)—w(h)] +o(i*)
| 4
= D(1,0) + E[D(l, 0)-D(0,0)]+0(h*)

 Orfor h—h/2:

extrapolation

operator: ( L )4]
2"

Giving: f'(x)=D(n1)+0
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Richardson Extrapolation Theorem
 These terms approach f'(x) very quickly.

N

* Since m=n, this leads to a two-dimensional triangular
array of values as follows:

Order starts much higher!!!!

 We must pick an initial value of h and a max iteration
value N.
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Example

- (cos(l(szZ)s

x=13h=" N =5

Which converges up to eight decimal places, exact result:
f'(13/10)=-((30000 cos>(169))/28561) - 100000/169 cos*(169) sin(169)
=144.46987425310895128951775669783203991279122284388...
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Second Derivative

For the second derivative we can start with
Fesh) = F@+ @ 0 04 0 s 0 L

f=h) = f)= f @h £ 5= ) 0 T 0 L

And add them (cancelling odd derivatives):

B _

- oL (4
With error term: 12hf (5)
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Partial derivatives

* Nothing special about them:
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differential equations

Ordinary differential equations (ODE)
* Define: dF
(k) () — 2~ —
X (t)_dtk’ k=1,2,---.n

* the ODE is an equation involving t and x®(t):
F(t,x,x',x",...,x("M)=0.

e Arestricted family of ODEs can be written as
x(t)=F(t,x,x',x",...,x(n-1)),

 and can be reduced to a system of the first order ODEs

dy. dk—lx
- = f'&(t7 Y1, Y2, ,yn) » Yk = ST

* Therefore, we consider ODEs with one variable, since most of results
for this single ODE can be applicable for the above n-coupled ODEs.
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Existence, uniqueness, and stability of
solution for ODEs

dy Definition:(Lipschits condition)

— = f(t,y) D CR? f:D— R: afunction, f:(t,y) — R

dt A function f(¢,y) satisfies a Lipschits condition, if

y(a) = . 4L > 0: a constant such that, |f(t,y1) — f(¢t,y2)| < Lly1 — yo|
for V(t,y1), (t,yo) € D. L: Lipschitz constant for f

Theorem:(Existence and uniqueness)
D:={{(r,y)|a<t<T,|ly—a| <p} for some > 0.

If f(t,y) is continuous on D (or AM > |f(t,y)]),

and f(t,y) satisfies Lipschitz codition in y on D,

then 3J[a,b] C [a,T] on which a unique solution to the ODE
y = ¢(t) exists with an initial value ¢(a) = «.
Definition:(Stability)

Consider a perturbed equation ? = f(t,z) +6(¢).

The initial value problem is calleé stable, if de > 0, and K > 0,
such that, whenever |eg] < € and |0(t)| < e for Vt € [a, b],

the perturbed equation has a unique solution that satisfies
|z(t) — y(t)| < Ke for Vt € [a,b].



Euler’s method

Consider the initial value problem

* Letw, be the numerical approximation to the exact value y.:=y(t),
* Itis determined at the set of discrete points, a=t,<t,<---<t =b
* We choose equally spaced points t:=a+ih, with h:=(b-a)/N, i=0,--- N.

From Taylor expansion of y(t) in t € [t;,t;41], 3¢ € [t;, ti41]

Y8 =y + ulC = 1) + (O — 13,

we have at t =t;44,

Yit1 Y 1
v =" = S (Oh = [t i),

Euler’'s method approximate this equation by
wo = «,

e — W,
“Llh L= f(t;,w;), where i=0,---,N —1
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Error of the Euler method:
* Assuming f'is twice differentiable on [a,b], the error at time step i is given by

Y1~ Y h

Ti h f(t’wyz) — Ey”(gi)a
* And " '
7| = o1 m[apg] 14”|,  (local error).
. t€la,

Note that |y-w,|=0(h), and, clearly, |y,-w,|— 0 ash— 0

Theorem:(Global error for Euler’s method)

Let y(t) be the unique solution to % = f(t,y), y(a) =a, t € [a,b.
Let wo, w1, -+ ,wyn be generated by Euler’s method.

If f satisfies Lipschitz condition in y on D = {(t,y) |t € [a,b],y € R}
with Lipschits constant L, and M a constant such that

max |y (1) < M
tela.b]

then

If g—i and g—g exists, "’ = % + g—gy’ = % + g—if may be used to estimate the bound M
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Stability of Euler’s method

T heorem:
d
y(t): the unique solution to d—g; = f(t,y), y(a) =a, tE€ a,b]

u;. generated by Euler's method with finite precision arithmetic,

ug = a+507 (l)
w41 = w; + hf(t;,u;) + 65,
where|§;| <6 for i=0,---, N.

If f satisfies Lipschitz condition in y on D = {(t,y) |t € [a,b],y € R}
with Lipschits constant L, and dM a constant such that

max |y’ ()] < M
te[a.b]

then

| yi —uil < (};j\g + h(SL) elltima) _ ] 4 gelltima),

h M ) .
Remarks: — > —, we will observe O(h) convergence, while global

error would grow for sufficintly small h.
Difference in the initail data « results in |@; — w;| < el(ti=9)|g — qaf.
Therefore the Euler's method is stable.



Taylor’s method

If the higher order continuous derivatives of y(t), and those for
f(t,y) exist, Taylor expansion of y(t), t € [t;,t;41], is written; namely,
36 € [titigr1],

v = iy — )+ ool =P = )

_|_m (n+l)(€)(t $) (1),

We may substitute the followings to the higher derivatives terms

1 d
Y, = %f(tay)h:ti = <—f ff>t=t.,

ot
m_ d? (03] 92 f 82f afof f
Yy, — t2f(t’y)|t:ti_ (8t2 + f@t@ 2f +@E+ ( y) f)t:t‘;

and so on.

The second order Taylor method: w;41 = w;+hf(1;, wZ)—I———( iy W;).
The fourth order Taylor method:

] P o)+ ).

W;41 = Wy + hf(tiwi) + — 31 Jt2 4! dt3

o (ki wi) +



Definitions

(Consistency, Convergence and Stability)

If , -0 as h — 0, the method is called consistent.
If 7, = O(hP), the method is of order p.

If lim max |y; — w;| = 0, the method is called convergent.
h—0 1<i<N

If 3k(t) s.t. |w; —w;| < k(t;)|a— | for Vi, the method is called stable.



One-step methods

wZ—I-lh_ o — ¢(f7 ti, wy, h’)

d
A[}ﬂo T = d_?tJ(ti) — ¢(f,ti v, 0) = f(ti,yi) — o(f, ti, 94, 0)

One-step method is consistent if f(ti, yi) = ¢(f, ¢, v5,0).

Remark: If the one-step method is consistent = convergent.
It can be shown that under certain conditions: one-step method is
convergent < consistent.



2"d order Runge-Kutta method.
¢(f7 t,y, h) — alf(ta y) + CIQf(t + 527 Y + AQf(ta y))

Determine constants a,, a,, 0,, A,, so that ¢ becomes O(h?)

approximation of the O(h?) Taylor method.

h
a/]_—l_a;z:]., and52=A2=£

* Modified Euler method. (Half step Euler + Midpoint integration.)

h
= — . o ki = t;, W;) ,
w—wz+2f(tu'wz)a =3 1= f( w)h .
wz’-l—l:wi‘l'hf(ti‘l‘ng) k22f<ti+§’wi+§kl>’
w;41 = w; + hko.
* Heun method. (One step Euler + Trapezoidal integration.)
w=w; + hf(;,w), > k1= f (¢, w;),
h ~
W41 = w; + E[f (ti,w;) + f (& + h,w)] ko= f (i + h,w;+ hky),
h
Wi = w; + 5(7@1 + k2).
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e Optimal RK2 method.

k1= f(,w;),
) oh | 2h
w—wi-l-?f(tz’,’wi), —3 k2=f<ti+?7wi+?kl)v
h 3h 2h _
Wi41 — Wi + Zf (ti’ wZ) + Zf (ti T ?’ ’(U) Wi = w; -+ %(k'l + 3k2).

e Classical 4" order Runge-Kutta method.
k1= f (ti wg),
h h
ko= f (ti‘l‘ 5 Wi +§k1) :
h h
k3 =f (ti-l- 5 Wi +§7€2> ,
ka = f (t; + h,w; + hk3),
h
wit1 = w; + g(kl + 2ko + 2k3 + k4).
The local truncation error of the classical 4t"-order Runge-Kutta

method is O(h4).
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Linear (m-step) Multistep method

Wil — 2 Wil
hi

S bo=0 : Explicit
bif(tit1—js wig1—5) O
EO P T £ 0 Implicit
Adams method: a;=0, for j=2,.., m
Derivation: Integrating the both side of the ODE,

sty = v + [ F @) & = ()

* The Implicit linear multistep method is derived from interpolating f(t,y(t))
to polynomial of order m.

*  The Explicit linear multistep method from interpolating polynomial of
order m-1

Substitute the form f(t,y(t)) = p(t) + R(t) in the integral form of ODE, and
integrate it to calculate b;.
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Remarks

The explicit scheme is also called Adams-Bashforth, implicit Adams-Moulton.
Explicit scheme may be efficient since the f(t,w,) of earlier steps are used.
The starting values for w,, (initial value), w,, ..., w__, are required for the m-
step method.

These are calculated from one-step method of the same order.

For the implicit method, value at t,,, w,,,, is calculated from an algebraic
equation. It is iteratively solved using w,,, of an explicit multistep method of
the same order as an initial guess.

Usually this iteration is done by direct substitution, and only one or two
iterations are made. This procedure is called predictor — corrector schemes.
For this scheme, the 4t-order formula is the most popular.

Predictor step (explicit formula)

- 4
W; 41 — Wy
Z+h = bif(tig1—j wig1—4)
j=1

Corrector step (implicit formula)

3
W;41 — Wy _
s - L= bof(tit1,Wig1) + E bjf(ti—l—l—jvwi-Fl—j)
J=1




PDEs

* |In contrast to ODEs, PDEs are differential equation that contains unknown
multivariable (ODE: single variable) functions and their partial derivatives:

2 2

 They describe a wide variety of phenomena such as:

sound, heat, electrostatics, electrodynamics, fluid flow, elasticity, or qguantum
mechanics.

 If Fis alinear function of u and its derivatives, then the PDE is called linear.
Common examples of linear PDEs include the heat equation, the wave equation,
Laplace's equation, Helmholtz equation, Klein—-Gordon equation, and Poisson's
equation.

* ODEs often model one-dimensional dynamical systems, PDEs often model
multidimensional systems. [for the ODEs before: n=1, u=y, x,=t]
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e Common notation:

ou

Ue = % * subscripts for spatial derivatives

ox

i = 2Vu « V for gradients
2Au * And A for the Laplacian

2
Ugy = O u = 2 @ e dots for time derivatives
Oyox 0Oy

U =

 Many methods for ODEs are simply adapted to PDEs
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Example: 1D heat equation

Consider u, = u,, and initial condition u(x,0) = g(x)
We will use the finite difference method to approximate the solution
Forward difference for u,

Centered difference for u,, (we discretize function u with respect to x
with grid size h, and denote the value at x=jh, as u;)

Re-write equation in terms of the finite difference approximations:

(ujn+1_ ujn )/ht = (unj+1 B 2ujn + unj-l)/hzx

Error: The local truncation error is O(h,) from the left hand side and is
O(h2) from the right hand side. The parameter s=h,/h2 determines the
stability

Remarks: Now all function values u; need to be stored and calculated
separately. All initial value of u; at t=0 need to be given by g; The finite
difference method above is explicit.



Boundary condition types

 The normal derivative of the problem is given: Neumann boundary
condition.
For example, if there is a heater at one end of an iron rod, then energy
would be added at a constant rate but the actual temperature would not be
known.
For an ODE on an interval [a,b]: 4/(a) = a and ¢/ (b) = 3

For a PDE %(X) = Vy(x) -n(x) = f(x) Vx € oN.

 The boundary values to the problem are given: Dirichlet boundary
condition.
For example, if one end of an iron rod is held at absolute zero, then the
value of the problem would be known at that point in space.

y(x) = f(x) Vax € o)

* Boundary has the form of a curve or surface that gives a value to the
normal derivative and the variable: Cauchy boundary condition.
These are natural for, e.qg., second order ODE, where y(a) and y’(a) are given



Crank-Nicolson scheme

Let us consider again the heat equation and define
(0u?)"=(u"y,q - 2u" + u" 1)/h?,
Define the 6-scheme for 0<6<1:

n+l1

ui" —u”

At
For 8=1/2: Crank-Nicolson

Can avoid any restrictions on stability conditions

= (1-60)(6u?)," +6(5u?),"™"

Unconditionally stable no matter what the value of s is if
Hh<O< 1.

Is implicit: to get the "next" value of u in time and that a system of
algebraic equations must be solved. In many problems, especially linear
diffusion, the algebraic problem is tridiagonal and may be efficiently
solved with the tridiagonal matrix algorithm

For 6<1/2 we need the condition s<1/(2-46) for stability



Summary

* Forward Euler method (explicit):

+1 2
wp T —ul _ (u, vt ou 0O u)

At ¢ Ox’ Ox?

e Backward Euler method (implicit):

+1 2
u; —u?’:FinJrl o 8u’ 0“u
At Ox’ Ox?

* Crank-Nicolson (implicit):

1

At ox’ Ox?

ntl a1 ou  0?
) Ui _ 5 [F.”“ (u, x, 1, ¢ u) + E (u, x,t
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Iterative Solvers for PDE’s

Many PDE’s can be rewritten as linear equation systems after discretization (in
particular for implicit schemes). For the following equation:

where Xx; are spatial coordinates and t time

* If Fislinear in u this is clear: spatial derivative discretizations lead to off-diagonal
elements in the matrix for the linear equation

* Inthe presence of non-linear terms in u, those can be approximated by, e.g.,
explicit solvers and then used as constants for the iterative scheme

* Then iterative solver for the linear(ized) equation system can be used

e If the time discretization is sufficiently small, changes in u are typically small and
the convergence of the iterative solvers can be fast
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Spectral methods

* Finite difference method — approximate a function locally using lower
order interpolating polynomials.

e Spectral method — approximate a function using global higher order
interpolating polynomials.

e Using spectral method, a higher order approximation can be made with
moderate computational resources.
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Next lecture:

* (Pseudo) random number generators
e Data analysis
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