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Numerical Differentiation 
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• The mathematical definition: 

• Graphically, as the 
tangential line: 

• Numerically, we can not calculate the limit as h goes to 
zero, so we need to approximate it. 

• Apply directly for a non-zero h leads to the slope of the 
secant curve. 

Numerical*Differen.a.on*
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•  The*mathema.cal*defini.on:*

•  Graphically,*as*the*tangen.al*line:*

•  Numerically,*we*can*not*calculate*the*limit*as*h*goes*to*
zero,*so*we*need*to*approximate*it.*

•  Apply*directly*for*a*non?zero*h*leads*to*the*slope*of*the*
secant*curve.*

0

( ) ( )'( ) lim
h

f x h f x
f x

h→

+ −
=

x" x+h"

Numerical*Differen.a.on*

A.*Glatz:*Computa.onal*Methods*in**Condensed*Ma<er*Physics*?*Introduc.on* 2*

•  The*mathema.cal*defini.on:*

•  Graphically,*as*the*tangen.al*line:*

•  Numerically,*we*can*not*calculate*the*limit*as*h*goes*to*
zero,*so*we*need*to*approximate*it.*

•  Apply*directly*for*a*non?zero*h*leads*to*the*slope*of*the*
secant*curve.*

0

( ) ( )'( ) lim
h

f x h f x
f x

h→

+ −
=

x" x+h"



…

A. Glatz: Advanced Computational Methods in Condensed Matter Physics - Introduction

…*

A.*Glatz:*Computa.onal*Methods*in**Condensed*Ma<er*Physics*?*Introduc.on* 3*

•  This*is*called*Forward'Differences*and*can*be*derived*
using*Taylor�s*Series:*
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Reminder: errors

A. Glatz: Advanced Computational Methods in Condensed Matter Physics - Introduction

• Truncation Error: introduced in the solution by 
the approximation of the derivative 

• Round-off Error: introduced in the 
computation by the finite number of digits 
used by the computer 

• Solving differential equations is done in 
multiple steps. Therefore we also have: 
• Local Error: from each term of the equation 
• Global Error: from the accumulation of local 

error 



Truncation errors 
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• Let f(x) = a+e, and f(x+h) = a+f. 
• Then, as h approaches zero, e<<a and f<<a. 
• With limited precision on our computer, our 

representation of f(x) ≈ a ≈ f(x+h). 
• We can easily get a random round-off bit as 

the most significant digit in the subtraction. 
• Dividing by h, leads to a very wrong answer for 

f’(x). 



Error trade-off
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Error trade-off*
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•  Using*a*smaller*step*size*reduces*trunca.on*error.*
•  However,*it*increases*the*round?off*error.*
•  Trade*off/diminishing*returns*occurs:*Always*think*and*test!*

* Log*error*

Log*step*size*

Trunca.on*error*

Round*off*error*

Total*error* Point*of**
diminishing*
returns*



“Backward” Differentiation 
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“Backward”*Differen.a.on*
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•  This*forward*differen.a.on*formula*favors*(or*biases*
towards)*the*right?hand*side*of*the*curve.*

•  Why*not*use*the*lec?*
•  This*leads*to*the**

Backward'Differences'formula:*
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Central difference
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Central*difference*
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•  Can*we*do*be<er?*
•  Let�s*average*the*two:*

•  This*is*called*the*Central'Difference*formula.*
•  This*formula*does*not*seem*very*good.*

–  It*does*not*follow*the*calculus*formula.*
–  It*takes*the*slope*of*the*secant*with*width*2h.*
–  The*actual*point*we*are*interested*in*is*not*even*evaluated.*
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•  But,*is*this*any*be<er?*
•  Use*the*Taylor*series*to**

examine*the*error:*

*
*
•  The*central*differences*formula*has*much*be<er*

convergence.*
*
•  Approaches*the*deriva.ve*as*h2*goes*to*zero!!*
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But:
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But:*
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•  S5ll'have'trunca5on'error'problem.'

•  Consider*the*case*of:*

•  Build*a*table*with*
smaller*values*of*h.*

•  What*about*large*
values*of*h*for*this*
func.on?*
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2h
at x =1,h = 0.000333,with6 significant digits

!f (x) ! 0.0100033−0.0099966
0.000666666

= 0.010050

Relative error:
0.01-0.010050

0.01
= 0.5%



Richardson Extrapolation 
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Richardson*Extrapola.on*
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•  Can*one*do*be<er?*
•  Is*my*choice*of*h*a*good*one?*
•  Let’s*start*with*the*Taylor*series*of*the*difference:*

•  Assuming*the*higher*deriva.ves*exist:*

*
•  Richardson*Extrapola.on*examines*the*operator*ϕ(h)*as*a*func.on*of*h,*

which*approximates f’(x) to O(h2) .*
•  For*h!0:*
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•  Using*these*two*formula�s,*we*can*come*up*with*another*
es.mate*for*the*deriva.ve*that*cancels*out*the*h2*terms.*

*
•  If*h*is*small*(h<<1),*then*h4*goes*to*zero*much*faster*than*h2.*
•  Can*we*cancel*out*the*h6*term?*

–  Yes,*by*using*h/4*to*es.mate*the*deriva.ve.*
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Generalization
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Generaliza.on*
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•  Let*us*define*the*
central*differences*
operator*for*different*
values*of*h:*

•  I.e.*

•  Or*for*h→h/2:*

•  Define*Richardson’s*
extrapola.on*
operator:*

D n,0( ) ≡ϕ h
2n
!

"
#

$

%
&

= L+ A k,0( ) h2n
!

"
#

$

%
&

k=1

∞

∑
2k

L = lim
h→0

ϕ(h) = !f x( )
( )

[ ] ( )

4

4

1( ) ( ) ( ) ( )
2 3 2

1(1,0) (1,0) (0,0)
4 1

h hf x h O h

D D D O h

ϕ ϕ ϕ" #$ = + − +& '( )

= + − +
−

[ ]
41( ) ( ,0) ( ,0) ( 1,0)

4 1 2n
hf x D n D n D n O

! "! "# = + − − + % &% &% &− ' (' (

D n,m( ) = D(n,m−1)+ 1
4m −1

D n,m−1( )−D n−1,m−1( )!
"

#
$, 1≤m ≤ n( )

!f (x) = D(n,1)+O h
2n
"

#
$

%

&
'

4"

#

$
$

%

&

'
'Giving:*



Richardson Extrapolation Theorem 
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Richardson*Extrapola.on*Theorem*
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•  These*terms*approach*f’(x)"very*quickly.*

•  Since*m≤"n,*this*leads*to*a*two?dimensional*triangular*
array*of*values*as*follows:*

*
*
•  We*must*pick*an*ini.al*value*of*h*and*a*max*itera.on*

value*N.*
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Example
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Example*
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f (x) =
cos(100x2( )

5

x3

x =1.3, h = 1
128

,N = 5

16.696386
40.583393 48.583393
109.322528 132.235574 137.814897
135.031747 143.601487 144.359214 144.463092
142.068615 144.414238 144.468421 144.470154 144.470182
143.866937 144.466377 144.469853 144.469876 144.469875 D 5,5( ) =144.469875

Which*converges*up*to*eight*decimal*places,*exact*result:*
f’(13/10)=?((30000*cos5(169))/28561)*?*100000/169*cos4(169)*sin(169)*

* *≈144.46987425310895128951775669783203991279122284388…*



Second Derivative
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Second*Deriva.ve*
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•  For*the*second*deriva.ve*we*can*start*with*

•  And*add*them*(cancelling*odd*deriva.ves):*

•  And*therefore:*

*
•  With*error*term:*

f (x + h) = f (x)+ !f (x)h+ !!f (x) h
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Partial derivatives

A. Glatz: Advanced Computational Methods in Condensed Matter Physics - Introduction

Par.al*deriva.ves*
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•  Nothing*special*about*them:*
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differential equations 

A. Glatz: Advanced Computational Methods in Condensed Matter Physics - Introduction

differen.al*equa.ons*
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Ordinary*differen.al*equa.ons*(ODE)*
•  Define:*

•  the*ODE*is*an*equa.on*involving*t*and*x(k)(t):**
F(t,x,x',x'',...,x(n))=0.*

•  A*restricted*family*of*ODEs*can*be*wri<en*as*
x(n)(t)=F(t,x,x',x'',...,x(n?1)),*

•  and*can*be*reduced*to*a*system*of*the*first*order*ODEs*

•  Therefore,*we*consider*ODEs*with*one*variable,*since*most*of*results*
for*this*single*ODE*can*be*applicable*for*the*above*n?coupled*ODEs.*

*
*



Existence, uniqueness, and stability of 
solution for ODEs 

A. Glatz: Advanced Computational Methods in Condensed Matter Physics - Introduction

Existence,*uniqueness,*and*stability*of*
solu.on*for*ODEs*
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Euler’s method
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Euler’s*method*
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Consider*the*ini.al*value*problem*

•  Let*wi*be*the*numerical*approxima.on*to*the*exact*value*yi:=y(ti),*
•  It*is*determined*at*the*set*of*discrete*points,*a=t0<t1<!<tn=b*
•  We*choose*equally*spaced*points*ti:=a+ih,*with*h:=(b?a)/N,*i=0,!*N.**
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Error*of*the*Euler*method:*
•  Assuming**f*is*twice*differen.able*on*[a,b],*the*error*at*.me*step*i*is*given*by*

•  And*

*
Note*that*|yi?wi|=O(h),*and,*clearly,*|yi?wi|!*0**as*h!*0*



Stability of Euler’s method 
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Stability*of*Euler’s*method*
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Taylor’s method 
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Taylor’s*method*
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Definitions
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Defini.ons*
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(Consistency,*Convergence*and*Stability)*



One-step methods 
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One?step*methods*
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One?step*method*is*consistent*if**

Remark:*If*the*one?step*method*is*consistent*)*convergent.***
It*can*be*shown*that*under*certain*condi.ons:*one?step*method*is*
convergent*,*consistent.***
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2nd*order*Runge?Ku<a*method.**

Determine*constants*a1,*a2,*δ2,*Δ2,*so*that*φ*becomes*O(h2)**
approxima.on*of*the*O(h2)*Taylor*method.*

• *Heun*method.**(One*step*Euler*+*Trapezoidal*integra.on.)*

• *Modified*Euler*method.***(Half*step*Euler*+*Midpoint*integra.on.)*
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• ��Classical*4th*order*Runge?Ku<a*method.**

The*local*trunca.on*error*of*the*classical*4th?order*Runge?Ku<a*
method*is*O(h4).**

• �Op.mal*RK2*method.*



Linear (m-step) Multistep method 

A. Glatz: Advanced Computational Methods in Condensed Matter Physics - Introduction

Linear*(m?step)*Mul.step*method.**
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Adams*method:*aj*=*0,*for**j*=*2,*..*,*m*
Deriva.on:*Integra.ng*the*both*side*of*the*ODE,**

•  The*Implicit*linear*mul.step*method*is*derived*from*interpola.ng*f(t,y(t))*
to*polynomial*of*order*m.*

•  The*Explicit*linear*mul.step*method*from*interpola.ng*polynomial*of*
order*m?1*

Subs.tute*the*form*f(t,y(t))*=*p(t)*+*R(t)*in*the*integral*form*of*ODE,*and*
integrate*it*to*calculate*bj*.**



Remarks
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Remarks*
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•  The*explicit*scheme*is*also*called*Adams?Bashforth,*implicit*Adams?Moulton.*
•  Explicit*scheme*may*be*efficient*since*the*f(ti,wi)*of*earlier*steps*are*used.**
•  The*star.ng*values*for*w0*(ini.al*value),*w1,*…,*wm?1*are*required*for*the*m?

step*method.**
•  These*are*calculated*from*one?step*method*of*the*same*order.*
•  For*the*implicit*method,*value*at*ti+1*,*wi+1*,*is*calculated*from*an*algebraic*

equa.on.**It*is*itera.vely*solved*using*wi+1*of*an*explicit*mul.step*method*of*
the*same*order*as*an*ini.al*guess.***

•  Usually*this*itera.on*is*done*by*direct*subs.tu.on,*and*only*one*or*two*
itera.ons*are*made.**This*procedure*is*called*predictor*–*corrector*schemes.*

•  For*this*scheme,*the*4th?order*formula*is*the*most*popular.***



PDEs
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PDEs*
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•  In*contrast*to*ODEs,*PDEs*are*differen.al*equa.on*that*contains*unknown*
mul9variable*(ODE:*single*variable)*func.ons*and*their*par.al*deriva.ves:*

*

•  They*describe*a*wide*variety*of*phenomena*such*as:*
sound,*heat,*electrosta.cs,*electrodynamics,*fluid*flow,*elas.city,*or*quantum*
mechanics.*

•  If*F*is*a*linear*func.on*of*u*and*its*deriva.ves,*then*the*PDE*is*called*linear.*
Common*examples*of*linear*PDEs*include*the*heat*equa.on,*the*wave*equa.on,*
Laplace's*equa.on,*Helmholtz*equa.on,*Klein–Gordon*equa.on,*and*Poisson's*
equa.on.*

•  ODEs*ocen*model*one?dimensional*dynamical*systems,*PDEs*ocen*model*
mul.dimensional*systems.*[for*the*ODEs*before:*n=1,*u=y,*x1=t]*



…
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…*
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•  Common*nota.on:*

•  Many*methods*for*ODEs*are*simply*adapted*to*PDEs*

•  subscripts*for*spa.al*deriva.ves*

•  dots*for*.me*deriva.ves*

•  r*for*gradients*
•  And*¢*for*the*Laplacian*



Example: 1D heat equation 
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Example:*1D*heat*equa.on*
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•  Consider*ut*=*uxx*and*ini.al*condi.on**u(x,0)*=*g(x)*
•  We*will*use*the*finite*difference*method*to*approximate*the*solu.on*
•  Forward*difference*for*ut*
•  Centered*difference*for*uxx*(we*discre.ze*func.on*u*with*respect*to*x*

with*grid*size*hx*and*denote*the*value*at*x=jhx*as*uj)*
•  Re?write*equa.on*in*terms*of*the*finite*difference*approxima.ons:*

*
(ujn+1*?*ujn*)/ht**=***(unj+1*?*2ujn*+*unj?1)/h2x*

•  Error:+The*local*trunca.on*error*is*O(ht)*from*the*lec*hand*side*and*is*
O(h2x)*from*the*right*hand*side.*The*parameter*s=ht/h2x*determines*the*
stability*

•  Remarks:"Now*all*func.on*values*uj*need*to*be*stored*and*calculated*
separately.*All*ini.al*value*of*uj*at*t=0*need*to*be*given*by*gj.*The*finite*
difference*method*above*is*explicit.*



Boundary condition types 
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Boundary*condi.on*types*
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•  The*normal*deriva.ve*of*the*problem*is*given:*Neumann+boundary+
condi(on.++
For"example,"if"there"is"a"heater"at"one"end"of"an"iron"rod,"then"energy"
would"be"added"at"a"constant"rate"but"the"actual"temperature"would"not"be"
known."
For*an*ODE*on*an*interval*[a,b]:*
For*a*PDE*

•  The*boundary*values*to*the*problem*are*given:*Dirichlet+boundary+
condi(on.+
For"example,"if"one"end"of"an"iron"rod"is"held"at"absolute"zero,"then"the"
value"of"the"problem"would"be"known"at"that"point"in"space."

•  Boundary*has*the*form*of*a*curve*or*surface*that*gives*a*value*to*the*
normal*deriva.ve*and*the*variable:*Cauchy+boundary+condi(on.+
These"are"natural"for,"e.g.,"second"order"ODE,"where"y(a)"and"y’(a)"are"given+



Crank-Nicolson scheme 
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Crank?Nicolson*scheme*
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•  Let*us*consider*again*the*heat*equa.on*and*define*
(±u2)nj=(unj+1*?*2ujn*+*unj?1)/h2x*

•  Define*the*µ?scheme*for*0<µ<1:*

•  For*µ=1/2:*Crank?Nicolson*
•  Can*avoid*any*restric.ons*on*stability*condi.ons*
•  Uncondi.onally*stable*no*ma<er*what*the*value*of*s*is*if*

½·µ·*1.*
•  Is*implicit:*to*get*the*"next"*value*of*u*in*.me*and*that*a*system*of*

algebraic*equa.ons*must*be*solved.*In*many*problems,*especially*linear*
diffusion,*the*algebraic*problem*is*tridiagonal*and*may*be*efficiently*
solved*with*the*tridiagonal*matrix*algorithm*

•  For*µ<1/2*we*need*the*condi.on*s<1/(2?4µ)*for*stability*

1
2 2 1(1 )( ) ( )

n n
j j n n

j j
u u u u

t
θ δ θ δ

+
+−

= − +
Δ



Summary
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Summary*
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•  Forward*Euler*method*(explicit):*

•  Backward*Euler*method*(implicit):*

•  Crank?Nicolson*(implicit):*



Iterative Solvers for PDE’s
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Many PDE’s can be rewritten as linear equation systems after discretization (in 
particular for implicit schemes). For the following equation:

𝐹(𝑥!, … , 𝑥", 𝑢,
#$
#%!

, … , #$
#%"

, ##$
#%!#%!

, … , ##$
#%!#%"

, … ) = #$
#&

,

where 𝑥' are spatial coordinates and 𝑡 time

• If F is linear in u this is clear: spatial derivative discretizations lead to off-diagonal 
elements in the matrix for the linear equation

• In the presence of non-linear terms in u, those can be approximated by, e.g., 
explicit solvers and then used as constants for the iterative scheme

• Then iterative solver for the linear(ized) equation system can be used
• If the time discretization is sufficiently small, changes in u are typically small and 

the convergence of the iterative solvers can be fast



Spectral methods
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Spectral*methods*
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•  Finite*difference*method*–*approximate*a*func.on*locally*using*lower*
order*interpola.ng*polynomials.***

•  Spectral*method*–*approximate*a*func.on*using*global*higher*order*
interpola.ng*polynomials.***

•  Using*spectral*method,*a*higher*order*approxima.on*can*be*made*with*
moderate*computa.onal*resources.***



Next lecture:
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• (Pseudo) random number generators 
• Data analysis 


