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Motivation: Definite Integral
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(Numerical) Quadrature
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• In general, a numerical integration is the approximation 
of a definite integration by a “weighted” sum of 
function values at discretized points within the interval 
of integration.

f (x)dx
a

b
∫ ≈ wi f (xi )

i=0

N

∑

where wi  is the weighted factor depending on the integration
 schemes used, and f (xi ) is the function value evaluated at the 
given point xi



Methods
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• Riemann integrals
– Lower and Upper Sums
– Midpoint Sums

• Newton Cotes formulas
– Trapezoid Rules
– Simpson’s Rules
– Adaptive Simpson’s Scheme
– Simpson’s 8/3 and Bode’s rule

• Gaussian Quadrature Formulas



Lower and Upper Sums
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The lower and upper sums are 
defined as:

Lower:

Upper: 

Define lower and upper bounds for the real integral, but are impractical because of “inf” 
and “sup”.
More useful left and right sums:



Bounding approximations
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x0 x1 x2 x4x3



Refinement 1
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x0 x3 x5 x9x7



Refinement 2
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x0 x5 x7 x11x9



Monotonic functions
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• Note that if a function is monotonically increasing (or 
decreasing), then the lower sum corresponds to the left 
partition values, and the upper sum corresponds to the 
right partition values. 

x0 x3 x5 x9x7



Composite Midpoint Rule
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x=a x=b

• N intervals between a and b
• Approximate function by 

rectangle in each interval
• Height of each rectangle: 

f(x*k) with x*k=(xk+xk-1)/2

x=x1* x=xn*

height=f(x1*) height=f(xn*)
f(x)

x



Trapezoidal Rule
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x=a x=b

x=x1 x=xn-1

f(x)

x

The midpoint rule can be made more 
accurate by using trapezoids to replace the 
rectangles as shown. 
A linear approximation of the function 
locally sometimes work much better than 
using the averaged value like the midpoint 
rule does.



Higher Order Newton-Cotes formulas
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From now on we assume equally spaced intervals, i.e., h=(¢ x=)(b-a)/N

Remarks:
• So far we have shown closed formulas, using the “end-”values f(a) and f(b)
• If f(a) and f(b) are difficult to compute: use open formulas
• Error of the trapezoidal rule:

i.e. only (piecewise) linear 
functions are integrate exactly

• More accurate integration formula can be achieved by approximating the local curve by a 
higher order functions, e.g. polynomials.  

4.1 Classical Formulas for Equally Spaced Abscissas 131
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x0 xN xN + 1

open formulas use these points

closed formulas use these points

x1 x2

h

Figure 4.1.1. Quadrature formulas with equally spaced abscissas compute the integral of a function
between x0 and xN+1. Closed formulas evaluate the function on the boundary points, while open
formulas refrain from doing so (useful if the evaluation algorithm breaks down on the boundary points).

midpoint rule,” equation 4.1.19, see §4.2), the classical formulas are almost entirely
useless. They are museum pieces, but beautiful ones.

Some notation: We have a sequence of abscissas, denoted x0, x1, . . . , xN ,
xN+1 which are spaced apart by a constant step h,

xi = x0 + ih i = 0, 1, . . . , N + 1 (4.1.1)

A function f(x) has known values at the xi’s,

f(xi) ≡ fi (4.1.2)

We want to integrate the function f(x) between a lower limit a and an upper limit
b, where a and b are each equal to one or the other of the x i’s. An integration
formula that uses the value of the function at the endpoints, f(a) or f(b), is called
a closed formula. Occasionally, we want to integrate a function whose value at one
or both endpoints is difficult to compute (e.g., the computation of f goes to a limit
of zero over zero there, or worse yet has an integrable singularity there). In this
case we want an open formula, which estimates the integral using only x i’s strictly
between a and b (see Figure 4.1.1).

The basic building blocks of the classical formulas are rules for integrating a
function over a small number of intervals. As that number increases, we can find
rules that are exact for polynomials of increasingly high order. (Keep in mind that
higher order does not always imply higher accuracy in real cases.) A sequence of
such closed formulas is now given.

Closed Newton-Cotes Formulas

Trapezoidal rule:
∫ x2

x1

f(x)dx = h

[

1
2
f1 +

1
2
f2

]

+ O(h3f ′′) (4.1.3)

Here the error term O( ) signifies that the true answer differs from the estimate by
an amount that is the product of some numerical coefficient times h 3 times the value
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Figure 4.1.1. Quadrature formulas with equally spaced abscissas compute the integral of a function
between x0 and xN+1. Closed formulas evaluate the function on the boundary points, while open
formulas refrain from doing so (useful if the evaluation algorithm breaks down on the boundary points).

midpoint rule,” equation 4.1.19, see §4.2), the classical formulas are almost entirely
useless. They are museum pieces, but beautiful ones.

Some notation: We have a sequence of abscissas, denoted x0, x1, . . . , xN ,
xN+1 which are spaced apart by a constant step h,

xi = x0 + ih i = 0, 1, . . . , N + 1 (4.1.1)

A function f(x) has known values at the xi’s,

f(xi) ≡ fi (4.1.2)

We want to integrate the function f(x) between a lower limit a and an upper limit
b, where a and b are each equal to one or the other of the x i’s. An integration
formula that uses the value of the function at the endpoints, f(a) or f(b), is called
a closed formula. Occasionally, we want to integrate a function whose value at one
or both endpoints is difficult to compute (e.g., the computation of f goes to a limit
of zero over zero there, or worse yet has an integrable singularity there). In this
case we want an open formula, which estimates the integral using only x i’s strictly
between a and b (see Figure 4.1.1).

The basic building blocks of the classical formulas are rules for integrating a
function over a small number of intervals. As that number increases, we can find
rules that are exact for polynomials of increasingly high order. (Keep in mind that
higher order does not always imply higher accuracy in real cases.) A sequence of
such closed formulas is now given.

Closed Newton-Cotes Formulas

Trapezoidal rule:
∫ x2

x1

f(x)dx = h

[

1
2
f1 +

1
2
f2

]

+ O(h3f ′′) (4.1.3)

Here the error term O( ) signifies that the true answer differs from the estimate by
an amount that is the product of some numerical coefficient times h 3 times the value



Polynomial approximation
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• Idea: replace f(x) in an interval with a known and simple function 
• Here: approximate f(x) by an mth order polynomial:

• To determine the coefficients ai, we need (m+1) equations
• This means we pick m+1 intermediate x-coordinates, xk,i, within 

each interval [xk-1,xk] and solve: f(xk,i)=pm(xk,i)
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Example m=1
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• Most simple approximation of f: first order polynomial (a 
straight line)

• Newton’s form of the interpolating polynomial (N=1):

• Now, solve the integral:

à Trapezoid role:
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The famous Simpson’s Rule
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Error: O(h5f(4)) for one interval. f(4) is to be taken at some point within the interval

For m=2, we obtain Simpson’s 1/3 rule:
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Quadratic
Polynomial



Simpson’s rule for x3
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Illustrations for f(x)=x3
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left right midpoint

trapezoidal

Simpson



Composite Simpson 1/3
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• Example: 9 points, 4 intervals
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For N=2:

i.e., the end-points have weight 1, interior sub-interval points 2, and half sub-intervals 4



m>2
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m=3: Simpson’s 3/8 rule:

m=4: Bode’s rule:

Remarks:
• The above expressions use multiple intervals for the approximation, i.e., h à mh
• Simpson’s 1/3 rule is exact for polynomials up to order 3!
• Simpson’s 3/8 rule is exact for polynomials up to order 3! (no “lucky cancellation”)
• Bode’s rule is exact for polynomials up to order 5!
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of the function’s second derivative somewhere in the interval of integration. The
coefficient is knowable, and it can be found in all the standard references on this
subject. The point at which the second derivative is to be evaluated is, however,
unknowable. If we knew it, we could evaluate the function there and have a higher-
order method! Since the product of a knowable and an unknowable is unknowable,
we will streamline our formulas and write only O( ), instead of the coefficient.

Equation (4.1.3) is a two-point formula (x1 and x2). It is exact for polynomials
up to and including degree 1, i.e., f(x) = x. One anticipates that there is a
three-point formula exact up to polynomials of degree 2. This is true; moreover, by a
cancellation of coefficients due to left-right symmetry of the formula, the three-point
formula is exact for polynomials up to and including degree 3, i.e., f(x) = x 3:

Simpson’s rule:
∫ x3

x1

f(x)dx = h

[

1
3
f1 +

4
3
f2 +

1
3
f3

]

+ O(h5f (4)) (4.1.4)

Here f (4) means the fourth derivative of the function f evaluated at an unknown
place in the interval. Note also that the formula gives the integral over an interval
of size 2h, so the coefficients add up to 2.

There is no lucky cancellation in the four-point formula, so it is also exact for
polynomials up to and including degree 3.

Simpson’s 3
8 rule:

∫ x4

x1

f(x)dx = h

[

3
8
f1 +

9
8
f2 +

9
8
f3 +

3
8
f4

]

+ O(h5f (4)) (4.1.5)

The five-point formula again benefits from a cancellation:

Bode’s rule:
∫ x5

x1

f(x)dx = h

[

14
45

f1 +
64
45

f2 +
24
45

f3 +
64
45

f4 +
14
45

f5

]

+O(h7f (6)) (4.1.6)

This is exact for polynomials up to and including degree 5.
At this point the formulas stop being named after famous personages, so we

will not go any further. Consult [1] for additional formulas in the sequence.

Extrapolative Formulas for a Single Interval

We are going to depart from historical practice for a moment. Many texts
would give, at this point, a sequence of “Newton-Cotes Formulas of Open Type.”
Here is an example:

∫ x5

x0

f(x)dx = h

[

55
24

f1 +
5
24

f2 +
5
24

f3 +
55
24

f4

]

+ O(h5f (4))
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of the function’s second derivative somewhere in the interval of integration. The
coefficient is knowable, and it can be found in all the standard references on this
subject. The point at which the second derivative is to be evaluated is, however,
unknowable. If we knew it, we could evaluate the function there and have a higher-
order method! Since the product of a knowable and an unknowable is unknowable,
we will streamline our formulas and write only O( ), instead of the coefficient.

Equation (4.1.3) is a two-point formula (x1 and x2). It is exact for polynomials
up to and including degree 1, i.e., f(x) = x. One anticipates that there is a
three-point formula exact up to polynomials of degree 2. This is true; moreover, by a
cancellation of coefficients due to left-right symmetry of the formula, the three-point
formula is exact for polynomials up to and including degree 3, i.e., f(x) = x 3:

Simpson’s rule:
∫ x3

x1

f(x)dx = h

[

1
3
f1 +

4
3
f2 +

1
3
f3

]

+ O(h5f (4)) (4.1.4)

Here f (4) means the fourth derivative of the function f evaluated at an unknown
place in the interval. Note also that the formula gives the integral over an interval
of size 2h, so the coefficients add up to 2.

There is no lucky cancellation in the four-point formula, so it is also exact for
polynomials up to and including degree 3.

Simpson’s 3
8 rule:

∫ x4

x1

f(x)dx = h

[

3
8
f1 +

9
8
f2 +

9
8
f3 +

3
8
f4

]

+ O(h5f (4)) (4.1.5)

The five-point formula again benefits from a cancellation:

Bode’s rule:
∫ x5

x1

f(x)dx = h

[

14
45

f1 +
64
45

f2 +
24
45

f3 +
64
45

f4 +
14
45

f5

]

+O(h7f (6)) (4.1.6)

This is exact for polynomials up to and including degree 5.
At this point the formulas stop being named after famous personages, so we

will not go any further. Consult [1] for additional formulas in the sequence.

Extrapolative Formulas for a Single Interval

We are going to depart from historical practice for a moment. Many texts
would give, at this point, a sequence of “Newton-Cotes Formulas of Open Type.”
Here is an example:

∫ x5

x0

f(x)dx = h

[

55
24

f1 +
5
24

f2 +
5
24

f3 +
55
24

f4

]

+ O(h5f (4))



Demo
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Numerical recipes: “with the exception of two of the most modest 
formulas (“extended trapezoidal rule,” and “extended midpoint 
rule,”), the classical formulas are almost entirely useless. 
They are museum pieces, but beautiful ones.”



Adaptive algorithms
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Much better than to predefine the number of sub-intervals, N, 
is to refine the integration rule until some specified degree of 
accuracy has been achieved.

4.2 Elementary Algorithms 139
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trapzd.) The leading error term in the second evaluation will be 1/4 the size of the
error in the first evaluation. Therefore the combination

S =
4
3
S2N − 1

3
SN (4.2.4)

will cancel out the leading order error term. But there is no error term of order 1/N 3,
by (4.2.1). The surviving error is of order 1/N 4, the same as Simpson’s rule. In fact,
it should not take long for you to see that (4.2.4) is exactly Simpson’s rule (4.1.13),
alternating 2/3’s, 4/3’s, and all. This is the preferred method for evaluating that rule,
and we can write it as a routine exactly analogous to qtrap above:

#include <math.h>
#define EPS 1.0e-6
#define JMAX 20

float qsimp(float (*func)(float), float a, float b)
Returns the integral of the function func from a to b. The parameters EPS can be set to the
desired fractional accuracy and JMAX so that 2 to the power JMAX-1 is the maximum allowed
number of steps. Integration is performed by Simpson’s rule.
{

float trapzd(float (*func)(float), float a, float b, int n);
void nrerror(char error_text[]);
int j;
float s,st,ost=0.0,os=0.0;

for (j=1;j<=JMAX;j++) {
st=trapzd(func,a,b,j);
s=(4.0*st-ost)/3.0; Compare equation (4.2.4), above.
if (j > 5) Avoid spurious early convergence.

if (fabs(s-os) < EPS*fabs(os) ||
(s == 0.0 && os == 0.0)) return s;

os=s;
ost=st;

}
nrerror("Too many steps in routine qsimp");
return 0.0; Never get here.

}

The routine qsimp will in general be more efficient than qtrap (i.e., require
fewer function evaluations) when the function to be integrated has a finite 4th
derivative (i.e., a continuous 3rd derivative). The combination of qsimp and its
necessary workhorse trapzd is a good one for light-duty work.

CITED REFERENCES AND FURTHER READING:
Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),

§3.3.
Dahlquist, G., and Bjorck, A. 1974, Numerical Methods (Englewood Cliffs, NJ: Prentice-Hall),

§§7.4.1–7.4.2.
Forsythe, G.E., Malcolm, M.A., and Moler, C.B. 1977, Computer Methods for Mathematical

Computations (Englewood Cliffs, NJ: Prentice-Hall), §5.3.

Example: 
adaptive 
refinement of 
trapeziod rule 
(equivalent to 
Simpson’s 1/3 rule)



Romberg integration
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• Romberg’s method is a natural generalization of the adaptive 
trapezoid rule.

• higher order than Simpson’s rule. 
• basic idea:  use the results from k successive refinements of the 

extended trapezoidal rule to remove all terms in the error series up to 
but not including O(1/N2k ). 

• goes also by the name of Richardson’s deferred approach to the limit: 
Perform some numerical algorithm for various values of a parameter 
h, and then extrapolate the result to the continuum limit h = 0. 



Gaussian Quadrature

A. Glatz: Advanced Computational Methods in Condensed Matter Physics - Introduction

• Gaussian quadratures are very powerful tools for approximating integrals.
• Quadrature rules are all based on special values of weights and Gauss 

points. These are pre-computed
• They are open formulas
• Gauss points are not equidistant
• Superior accuracy over (open) Newton-Cotes formulas
• Basic form:

• Note that the interval is between –1 and 1
• For other intervals, a change of variables is used to transfer the problem so that it 

utilizes the interval [-1, 1]
• The number of unknowns (xi & ci) -1 determine the polynomial acuracy

∫ ∑−
=

≈=
!

!
!

"#"#
!

"
"" #$%&##$'

ci : weighting factors
 xi : Gauss sampling points selected optimally



Example of deriving GQ
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• Here we concentrate on N=1 (composite rule are straight forward)

• For n=2, we have:

• This leads to 4 unknowns: c1, c2, x1, and x2

– two unknown weights (c1, c2) 

– two unknown sampling points (x1, x2) 

• we need four known values for the equation.
• If we had these, we could then attempt to solve for the four unknowns.
• Let’s with polynomials
• For n=2, let’s look at: 1, x, x2, x3

( ) ( )!!"" !"#!"#$ +≈



…

A. Glatz: Advanced Computational Methods in Condensed Matter Physics - Introduction

• Recalling the formula: 
– Constant

• f(x)=1

– Linear
• f(x)=x

– Quadratic
• f(x)=x2

– Cubic
• f(x)=x3
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2nd order GQ points/weights
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Solving these non-linear equations gives:

à Gauss-Legendre formula:

à This is exact for all polynomials up to and including degree 3!
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3rd order GQ
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• Solution of these equations gives

• Produces the three point Gauss-Legendre formula

– Exact for polynomials up to and including degree 5
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GQ weights and Gauss points
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.. even more
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GQ summary
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• Requires function evaluations at non-uniformly spaced 
points within the integration interval
– not appropriate for cases where the function is 

unknown
– not suited for dealing with tabulated data that appear 

in many engineering problems
• If the function is known, its efficiency can be a decided 

advantage



Root finding
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• Bi-section Method
• Newton’s method
• Secant Method
• Generalized Newton’s method for systems of non-

linear equations
– The Jacobian matrix



Motivation

A. Glatz: Advanced Computational Methods in Condensed Matter Physics - Introduction

• Many problems can be re-written into a 
form such as:
– f(x,y,z,…) = 0
– f(x,y,z,…) = g(s,q,…) 



Bisection Method
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• Based on the fact that a continuous function will change 
signs as it passes through the root:
f(a)*f(b) < 0
i.e., f(x) is zero in the interval [a,b]

• Once we have a root bracketed, we simply evaluate the 
mid-point and halve the interval.



example
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• c=(a+b)/2

a bc

f(a)>0

f(b)<0

f(c)>0
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• Guaranteed to converge to a root if one exists within the bracket.

c ba

a = c
f(a)>0

f(b)<0
f(c)<0
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Simple algorithm:
Given: a and b, such that f(a)*f(b)<0
Given: error tolerance, err

c=(a+b)/2.0; // Find the midpoint
While( |f(c)| > err ) {

if( f(a)*f(c) < 0 )  // root in the left half
  b = c;
else                 // root in the right half
  a = c;
c=(a+b)/2.0; // Find the new midpoint

}
return c;



Bisection error
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• The bisection method converges linearly or first-
order to the root.

• We gain an extra bit accuracy each iteration
• If we need an accuracy of 0.0001 and our initial 

interval (b-a)=1, then:
2-n < 0.0001  Þ   14 iterations

• Not bad, why do I need anything else?



Newton’s method
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• Open solution, that requires only one current guess.
• Root does not need to be bracketed.
• Consider some point x0.

– If we approximate f(x) as a line about x0, then we can again solve 
for the root of the line.

Iteration:

! ! !" # " #" # " #! " # " " " # "′= − +

x1 = x0 −
f (x0 )
!f (x0 )

xi+1 = xi −
f (xi )
!f (xi )



Example
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• Graphically, follow the tangent vector down to the x-axis 
intersection.

xi xi+1



Problems
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Newton’s method can
• diverge
• form loops

x0

1

2

3

4
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• Need the initial guess to be close, or, the function to 
behave nearly linear within the range.



Newton’s Algorithm
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• Requires the derivative function to be evaluated, 
hence more function evaluations per iteration.

• A robust solution would check to see if the 
iteration is stepping too far and limit the step.

• Most uses of Newton’s method assume the 
approximation is pretty close and apply one to 
three iterations blindly. 



Secant Method
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Tangent vector

xi xi-1

Secant line

• What if we do not know the derivative of 
f(x)?
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• As we converge on the root, the secant line 
approaches the tangent.

• Hence, we can use the secant line as an 
estimate and look at where it intersects the 
x-axis (its root).



…

A. Glatz: Advanced Computational Methods in Condensed Matter Physics - Introduction

• This also works by looking at the definition of the 
derivative:

• Therefore, Newton’s method gives:

• Which is the Secant Method.
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Next lecture:
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• Explicit and implicit PDE discretization 
• (Pseudo) random number generators 
• Data analysis 


