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Motivation: Definite Integral

To construct the definite integral of a function, we first define the mesh points xf")
according to

(n)

a= 5P < P < ) Q

<xylee<x <X =p,

and the evaluation points n; are then each taken from within the appropriate subinter-
val, i.e., 1; € [xi_1,xi],1 <i < n, arbitrarily. Now, if we assume that

lim [max (xl(n) ——xl@l)] =0
n—oo | 1<i<n

(this simply means that the largest distance between adjacent points g0es to zero as we
take more and more points), then, under very mild conditions on f, it can be shown
that the limit
n
L= lim 3 f(n)(x" =)

H-—>00 i=1
exists and its value is independent of the choices made for the grid points {xf")} and
evaluation points {7;}. When this happens, we call this limit value the definite integral
of f, and we write

L=1()= [ 1) dx.



(Numerical) Quadrature

* In general, a numerical integration is the approximation

of a definite integration by a “weighted” sum of
function values at discretized points within the interval

of integration. AY
P
R S
[ fyde=Yw f(x) )
i=0
a b?

where w. 1s the weighted factor depending on the integration

schemes used, and f (x,) is the function value evaluated at the

given point x,



Methods

* Riemann integrals
— Lower and Upper Sums
— Midpoint Sums
 Newton Cotes formulas
— Trapezoid Rules
— Simpson’s Rules
— Adaptive Simpson’s Scheme
— Simpson’s 8/3 and Bode’s rule

e Gaussian Quadrature Formulas



Lower and Upper Sums

The lower and upper sums are
defined as: !
N 0
Lower: — .
YT = — Xp_1) - f
;(wk Tp—1) . f(x)
N
pper: -yt = Z(wk —Tg—1)- sup  f(x)
—1 T _1<r<Tk

Define lower and upper bounds for the real integral, but are impractical because of “inf”
and “sup”.
More useful left and right sums:

N N

ZL = Z(:Bk; — wk_l) . f(a:k_l) ZR = Z(wk — xk—l) . f(xk)

k=1 k=1
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Bounding approximations

b

T < /f(m)dx <xT

a

x0 xl x2 x3 x4
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Refinement 1

x0 x3 x5 x7 x9
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Refinement 2

x0 x5 x7 x9 x11
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Monotonic functions

* Note that if a function is monotonically increasing (or
decreasing), then the lower sum corresponds to the left
partition values, and the upper sum corresponds to the
right partition values.

x0 x3 x5 x7 x9
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Composite Midpoint Rule

fix) 1
height=f(x;*) height=f(x,*)

N\ /

* Nintervals betweenaandb
Approximate function by
rectangle in each interval
* Height of each rectangle:

f(x*,) with x* =(x,+x,.1)/2
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flx)

»

Trapezoidal Rule

accurate by using trapezoids to replace the
rectangles as shown.

A linear approximation of the function
locally sometimes work much better than

using the averaged value like the midpoint
rule does.

/ %/\_. The midpoint rule can be made more




Higher Order Newton-Cotes formulas

From now on we assume equally spaced intervals, i.e., h=(A x=)(b-a)/N

L L @
X0 X1 X2 e XN XN +1

open formulas use these points

closed formulas use these points

Remarks:

So far we have shown closed formulas, using the “end-"values f(a) and f(b)
If f(a) and f(b) are difficult to compute: use open formulas

Error of the trapezoidal rule: s

i.e. only (piecewise) linear / f(z)dx = h Ffl + lfg] + O(h® )
functions are integrate exactly 1 2 2

More accurate integration formula can be achieved by approximating the local curve by a
higher order functions, e.g. polynomials.



Polynomial approximation

* Idea: replace f(x) in an interval with a known and simple function
* Here: approximate f(x) by an mi" order polynomial:

* To determine the coefficients a;,, we need (m+1) equations

* This means we pick m+1 intermediate x-coordinates, x, ; within
each interval [x,.1,x,] and solve: f(x ;)=p (X ;)

* Usually x, ;=x,4+i h/(m-1), i=0,...,m-1; i.e. X n1=X

 Examples: ,
m Polynomial Formula Error

1 linear Trapezoid  O(h?)
2 quadratic Simpson's1/3 O(h")
3 cubic Simpson's 3/8  O(h*)
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Example m=1

* Most simple approximation of f: first order polynomial (a
straight line)

 Newton’s form of the interpolating polynomial (N=1):

* Now, solve the integral:

1[0t
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The famous Simpson’s Rule

For m=2, we obtain Simpson’s 1/3 rule:

N
h
= . (f(wp—1) +4f (-1 +h/2) + f(xr))
k=1
e

Error: O(h>f®) for one interval. f#) is to be taken at some point within the interval



=

Simpson’s rule for x3

(b4 —a4) =l(b—a)(b3 +b’a+ba’ +a3)

4
a2

4 3

b’ +l(b+a)3 28
3 3

J

1

2

~p’ +§b3 +b’a+ba’ +§a3 +=a’

3

J



Illustrations for f(x)=x3

8- 8-

7 7 7

6 6 6

5 5-

4- 4

3 3

2 2 -

1- 1

0 , 0

0 0.5 1 1.5 2 0 0.5 1 1.5
left right

6- A
;.
6-
5
s
5.
,
-
"3 05 1 1.5 2 . . —
trapezoidal a m b
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Composite Simpson 1/3
For N=2: S(f@+af @+ 2 a+h)+47(a+ %)+ £ 0)

i.e., the end-points have weight 1, interior sub-interval points 2, and half sub-intervals 4

 Example: 9 points, 4 intervals

20 -

15

10 -

0.5
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m>2

T4 3 9 9 3
m=3: Simpson’s 3/8 rule: / f(x)dz =h [gﬁ oot gl Tt §f4] +O(h® fV)

14

A ) . xs _ (14, 64, 24 64, 14 7 £(6)
m=4: Bode’s rule: /gc1 f(x)dx = h[45f1+45f2+45f3+45f4+45f5] +O(h" )

Remarks:

* The above expressions use multiple intervals for the approximation, i.e., h 2 mh
* Simpson’s 1/3 rule is exact for polynomials up to order 3!

* Simpson’s 3/8 rule is exact for polynomials up to order 3! (no “lucky cancellation”)
* Bode’s rule is exact for polynomials up to order 5!



Demo

Numerical recipes: “with the exception of two of the most modest
formulas (“extended trapezoidal rule,” and “extended midpoint
rule,”’), the classical formulas are almost entirely useless.

They are museum pieces, but beautiful ones.”




Adaptive algorithms

Much better than to predefine the number of sub-intervals, N,
is to refine the integration rule until some specified degree of
accuracy has been achieved.

#include <math.h>
#define EPS 1.0e-6
#define JMAX 20

Example:
adaptive float gsimp(float (*func)(float), float a, float b)

P Returns the integral of the function func from a to b. The parameters EPS can be set to the
refinement of desired fractional accuracy and JMAX so that 2 to the power JMAX-1 is the maximum allowed

. number of steps. Integration is performed by Simpson’s rule.
trapeziod rule {
. float trapzd(float (*func)(float), float a, float b, int n);

(eCIUIValent to void nrerror(char error_text[]);
Simpson’s 1/3 rule) int jj;

float s,st,ost=0.0,0s8=0.0;

for (j=1;j<=JMAX;j++) {
st=trapzd(func,a,b,j);
s=(4.0*st-ost)/3.0; Compare equation (4.2.4), above.
if (j > 5) Avoid spurious early convergence.
if (fabs(s-os) < EPS*fabs(os) ||
(s == 0.0 & os == 0.0)) return s;

0s=s;
ost=st;

}

nrerror ("Too many steps in routine gsimp");

return 0.0; Never get here.



Romberg integration

Romberg’s method is a natural generalization of the adaptive
trapezoid rule.

higher order than Simpson’s rule.

basic idea: use the results from k successive refinements of the
extended trapezoidal rule to remove all terms in the error series up to
but not including O(1/NZk).

goes also by the name of Richardson’s deferred approach to the limit:
Perform some numerical algorithm for various values of a parameter
h, and then extrapolate the result to the continuum limit h = 0.



Gaussian Quadrature

« Gaussian quadratures are very powerful tools for approximating integrals.

* Quadrature rules are all based on special values of weights and Gauss
points. These are pre-computed

* They are open formulas

* Gauss points are not equidistant

» Superior accuracy over (open) Newton-Cotes formulas

* Basic form:

¢, . weighting factors
x; : Gauss sampling points selected optimally
* Note that the interval is between —1 and |
* For other intervals, a change of variables is used to transfer the problem so that it
utilizes the interval [-1, 1]
* The number of unknowns (x; & c;) -1 determine the polynomial acuracy
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Example of deriving GQ

* Here we concentrate on N=1 (composite rule are straight forward)

e Thisleads to 4 unknowns: ¢;, ¢,, X;, and x,
— two unknown weights (c;, ¢,)
— two unknown sampling points (x;, x,)
* we need four known values for the equation.
* |f we had these, we could then attempt to solve for the four unknowns.
* Let’s with polynomials
 Forn=2, let’s look at: 1, x, X%, x3
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e Recalling the formula:

— Constant
* flx)=1
— Linear
* flx)=x
— Quadratic
* flx)=x
— Cubic
* flx)=x°
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2"d order GQ points/weights

Solving these non-linear equations gives:

- Gauss-Legendre formula:

—> This is exact for all polynomials up to and including degree 3!
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3rd order GQ
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e Solution of these equations gives

* Produces the three point Gauss-Legendre formula

— Exact for polynomials up to and including degree 5

A. Glatz: Advanced Computational Methods in Condensed Matter Physics - Introduction



GQ weights and Gauss points

n 2 3 4 S 6
c, 10 0.5555555556  0.3478548451  0.2369268850  0.1713245
1.0 0.8888888880  0.6521451549  0.4786286705 03607616

0.5555555556 0.6521451549 0.5688888889 0.4679139
0.3478548451 0.4786286705 0.4679139

0.2369268850 0.3607616

0.1713245

—05773502692 —0.7745966692 —-0.8611363116 —0.9061798459 —0.932469514
0.5773502692 0.0000000000  —0.3399810436 —0.5384693101 —0.661209386
i 0.7745966692 0.3399810436 0.0000000000  —0.238619186
08611363116 0.5384693101 0.238619186
09061798459 0.661209386
0.932469514
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.. even more

TABLE 5.5 Gaussian Quadrature Nodes and Weights

n

(™

w (™

16

0.0000000000000000E+00

+0.5773502691896257E+00
+0.3399810435848563E+00
+0.8611363115940526E+00

+0.1834346424956498E+00
+0.5255324099163290E+00
+0.7966664774136268E+00
+0.9602898564975362E+00

+0.9501250983763744E-01

+0.2816035507792589E+00
+0.4580167776572274E+00
+0.6178762444026438E+00
+0.7554044083550030E+00
+0.8656312023878318E+00
+0.9445750230732326E+00
+0.9894009349916499E+00

0.2000000000000000E+01

(1)0000000000000000E+00
0.6521451548625464E+00
0.3478548451374476E-+00

0.3626837833783620E+00
0.3137066458778874E+00
0.2223810344533745E+00
0.1012285362903697E+00

0.1894506104550685E+00
0.1826034150449236E+00
0.1691565193950024E+00
0.1495959888165733E+00
0.1246289712555339E+00
0.9515851168249290E-01
0.6225352393864778E—01
0.2715245941175185E-01
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GQ summary

* Requires function evaluations at non-uniformly spaced
points within the integration interval

— not appropriate for cases where the function is
unknown

— not suited for dealing with tabulated data that appear
in many engineering problems

* |If the function is known, its efficiency can be a decided
advantage
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Root finding

e Bi-section Method

e Newton s method
e Secant Method



Motivation

 Many problems can be re-written into a
form such as:

- f(x,y,z,...) =0
— f(XIYIZI"') = g(slql'")




Bisection Method

Based on the fact that a continuous function will change
signs as it passes through the root:

f(a)*f(b) <0
i.e., f(x) is zero in the interval [a,b]

Once we have a root bracketed, we simply evaluate the
mid-point and halve the interval.



example

* c=(atb)/2




* Guaranteed to converge to a root if one exists within the bracket.




Simple algorithm:
Given: a and b, such that f(a)*£f(b)<0
Given: error tolerance, err

c=(a+b)/2.0; // Find the midpoint
While( |£f(c)| > err ) {
if( £(a)*f(c) < 0 ) // root in the left half

b =c;
else // root in the right half
a =c;

c=(a+b)/2.0; // Find the new midpoint
}

return c;



Bisection error

The bisection method converges linearly or first-
order to the root.

We gain an extra bit accuracy each iteration

If we need an accuracy of 0.0001 and our initial
interval (b-a)=1, then:
2"<0.0001 = 14 iterations

Not bad, why do | need anything else?



Newton’s method

* Open solution, that requires only one current guess.
* Root does not need to be bracketed.

* Consider some point x,.

— If we approximate f(x) as a line about x,, then we can again solve
for the root of the line.

Iteration:
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Example

e Graphically, follow the tangent vector down to the x-axis
intersection.




Problems

Newton’s method can
* diverge
* form loops E
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* Need the initial guess to be close, or, the function to
behave nearly linear within the range.
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Newton’s Algorithm

* Requires the derivative function to be evaluated,
hence more function evaluations per iteration.

* A robust solution would check to see if the
iteration is stepping too far and limit the step.

* Most uses of Newton’s method assume the
approximation is pretty close and apply one to
three iterations blindly.



Secant Method

e What if we do not know the derivative of

flx)?

- Secant line

Tangent vector



* As we converge on the root, the secant line
approaches the tangent.

* Hence, we can use the secant line as an
estimate and look at where it intersects the
x-axis (its root).



* This also works by looking at the definition of the
derivative:

* Therefore, Newton’ s method gives:

 Which is the Secant Method.
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Next lecture:

* Explicit and implicit PDE discretization
* (Pseudo) random number generators
e Data analysis




