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XXII. IDEAL FERMIONS AT LOW TEMPERATURES AND SOMMERFELD EXPANSION [(5+9+3) PTS]

Here you should apply the Sommerfeld expansion to calculate properties of Fermions at low temperatures (see lecture).

a) Calculate E(T,N, V ) up to order O(T 2) for a given single particle density of states (DoS) ρ(ϵ). Derive from that
the result for the specific heat (in order O(T )):

CV (T,N, V ) =

(
∂E

∂T

)
V,N

=
∂E

∂T
+

∂E

∂µ

(
∂µ

∂T

)
V,N

b) Derive an expression for the single particle DoS ρ(ϵ) in d dimensions for non-relativistic Fermions, with energy-
momentum relation ϵ = p2/(2m). What is special for d = 2? Use this expression to calculate the energy, E,
(order O(T 2)), heat capacity, CV , (order O(T )), and pressure, p(T,N, V ) = −(∂E/∂V )N,T , (order O(T 2)) - all for
arbitrary dimension d.

c) Calculate the Fermi-energy and heat capacity for relativistic Fermions with linear energy-momentum relation, ϵp = c|p|
(e.g., electrons in a white dwarf star) for arbitrary dimension d.
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XXIII. BOSE-EINSTEIN CONDENSATION [(4+6+8) PTS]

The grand canonical potential for an ideal (non-relativistic) Bose gas is given by

J(T, µ, V ) = T ln(1− z)− T
V

λ3
β

Li5/2(z) ,

where z = eµ/T , λβ = h/
√
2πmT , and Lis(z) is the polylogarithm function.

a) Use the potential J and calculate the entropy S(T, V, µ) = −( ∂J∂T )V,µ above and below the transition point of the
Bose condensation. Show that S is continuous at the transition point and vanishes for V = 0 and T = 0.

b) Calculate the specific heat

CV (T, V, z) = T

(
∂S

∂T

)
V,N

above and below the transition. In the following the volume is fixed. Notice, that the partial derivative of S(T, V, µ)
needs to be calculated while keeping N constant, i.e.,(

∂S

∂T

)
V,N

=

(
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∂T

)
z

+
∂S

∂z

(
∂z
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)
N

.

The derivative ∂z/∂T is obtained by applying the operator (∂/∂T )N on both sides of

N(T, V, µ) = −
(
∂J

∂µ

)
T,V

=
z

1− z
+

V

λ3
β

Li3/2(z) . (1)

Is the specific heat continuous at the transition point?

c) Calculate the inverse isothermal compressibility

K−1
T = −V

(
∂p

∂V

)
T,N

above and below the transition. Show that KT diverges at the transition point. Notice again, that the derivative is
to be calculated for constant N (T is fixed):

p ≈ T

λ3
β

Li5/2(z) ⇒
(
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)
N
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)
z
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(
∂z

∂V

)
N

.

In order to calculate
(
∂V
∂z

)
T,N

solve eq. (1) for V . Use the above results to calculate KT as function of the specific
volume v = V/N near the critical volume vc(T ) = λ3

β/Li3/2(1) at which the Bose condensation occurs, i.e., for
v − vc ≪ vc. Use the series expansion

Li3/2(z) = Li3/2(1)
(
1− 1.36

√
1− z + . . .

)
.

If you calculated all correctly, S is continuous at the transition point and vanishes at v = 0 (or T = 0). Furthermore,
CV (T, V, z) has a jump in the first derivative and KT diverges at the transition point. Therefore, the Bose-Einstein
condensation (BEC) is a phase transition of second order, if one considers the mixed phase of gas and condensate in the
region v < vc as a new phase. On the other hand, if the new phase is only the phase when all particles are in the condensate
at T = 0 (this state corresponds to the specific volume v = 0, since there is no repulsion), the BEC is a phase transition
of first order for all isotherms.



You can submit 2 of the following 3 optional problems!

XXIV. ISING SPIN SYSTEM IN MAGNETIC FIELD (OPTIONAL) [(2+2+4+4) PTS]

In a classical Ising spin system with N spins, each spin can be in one of two states: S = ±1. We consider such a system
of non-interacting spins in an external magnetic field H. The energy of a single spin i has the value Ei = µHSi = ϵ0Si.
The macrostates are defined by the total energy E = Mϵ0 for M = −N, . . . , N . Calculate:

a) the number of microstates in a macrostate,

b) the entropy SB(E),

c) the temperature T (E) for N ≫ 1, and

d) energy and entropy as function of temperature.

XXV. TWO-COMPONENT GAS (OPTIONAL) [(3+2+2) PTS]

Here we consider a gas consisting of two types of particles, which only differ in their mass (e.g. two isotopes of one element).
N1 particles have the mass m1 and N2 particles mass m2. All particles should be considered classical and non-interacting,
i.e.,

H(X⃗) =

N1∑
i=1

p2i
2m1

+

N1+N2∑
i=N1+1

p2i
2m2

.

The gas has temperature T and is enclosed in volume V .

a) Calculate the Helmholtz free energy F (T, V,N1, N2). Verify the homogeneity relation F (T, λV, λN1, λN2) =
λF (T, V,N1, N2).

b) Calculate from that the Gibbs free energy G(T, p,N1, N2) via Legendre transformation. What is the homogeneity
relation for G?

c) From the homogeneity relation for G derive the Gibbs-Duhem relation G(T, p,N1, N2) = µ1N1 + µ2N2.

XXVI. IDEAL GAS OF RELATIVISTIC PARTICLES (OPTIONAL) [4+3 PTS]

We consider an ideal gas of N non-interacting relativistic particles in a volume V = L3 in 3 dimensions. These particles
follow the Boltzmann statistics. The energy of a particle i is proportional to its momentum, i.e., ϵi = c|pi|.

a) Calculate E(β) and the heat capacity C of the gas.

a) Calculate SB(β).
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