Department of Physics - Northern Illinois University Prof. Andreas Glatz

XVII. HARMONIC OSCILLATOR [(9+9) PTS]

A harmonic oscillator has the energy eigenvalues

$$E_n = \hbar\omega\left(n+\frac{1}{2}\right), \quad n = 0, 1, 2, \dots$$

- a) Calculate the partition function $Z^{(c)} = \sum_{n} e^{-\beta E_{n}}$, the internal energy $E = \langle \mathcal{H} \rangle = -\frac{\partial}{\partial \beta} \ln Z^{(c)}$, the entropy $S = k_{B} \left(\beta E + \ln Z^{(c)}\right)$, and the heat capacity $C = \frac{\partial E}{\partial T}$ depending on temperature. Use the dimensionless variable $x \equiv \frac{1}{2}\beta\hbar\omega > 0$.
- b) Write the entropy as a function of the dimensionless energy $\eta \equiv 2E/(\hbar\omega)$. Recalculate the entropy using the definition of the Boltzmann entropy. To this end consider $N \gg 1$ equal (indistinguishable) oscillators and their possible distributions on the microstates given a total energy E, which defines the macrostate.

XVIII. QUANTUM LIOUVILLE EQUATION [6 PTS]

Show that the microscopic density matrix

$$\hat{\rho} = \frac{1}{N} \sum_{\nu} n_{\nu} \left| x_{\nu} \right\rangle \left\langle x_{\nu} \right|$$

satisfies the Quantum Liouville equation

$$\frac{\partial \hat{\rho}}{\partial t} = -\frac{\imath}{\hbar} \left[\hat{H}, \hat{\rho} \right] \, . \label{eq:eq:electropy}$$

XIX. N-LEVEL SYSTEM, NEGATIVE TEMPERATURES [(2+3+4+4+5) PTS]

The eigen-energies of the system we consider here are equidistant and their number is finite, f, i.e.,

$$E_{\nu} = (\nu - 1)\epsilon; \ \nu = 1, 2, \dots, f; \ \epsilon > 0.$$

- a) Calculate the canonical partition function $Z^{(c)} = \sum_{\nu} e^{-\beta E_{\nu}}$. *Remark:* Since the spectrum is limited from above, $Z^{(c)}$ exists for all real values of β - in particular also for negative temperatures. It is useful to introduce the dimensionless variable $x \equiv e^{-\beta\epsilon}$ with $0 < x < \infty$.
- b) Using $Z^{(c)}$, calculate the internal energy $E = -\frac{\partial}{\partial\beta} \ln Z^{(c)} = \epsilon x \frac{d}{dx} \ln Z^{(c)}$. At which temperature does E take its minimum, maximum, or value exactly between those?

- c) What are the 'occupation numbers' n_{ν} , which allow to write the internal energy as $E = \sum_{\nu=1}^{f} n_{\nu} E_{\nu}$? Show and interpret that $n_{\nu}(x^{-1}) = n_{f-\nu+1}(x)$ ("inversion of the occupation numbers"). Justify why $\beta = -\infty$ (or $T = 0^{-}$) should be the highest accessible temperature. What is the occupation number of the highest or lowest level at high or low temperatures, respectively?
- d) Calculate the entropy, $S = k_B (\ln Z^{(c)} + \beta E)$ as function of x and find an expression for S, which only depends on the occupation numbers. Calculate the heat capacity $C = \frac{\partial E}{\partial T}$.
- e) Simplify the expressions for $Z^{(c)}$, E, S, and C for the case of a two-level system, f = 2, which already shows all the relevant properties of the more general case. Sketch and discuss the qualitative graph of S(E).

XX. GRAND CANONICAL ENSEMBLE [(3+5) PTS]

The canonical partition function of a Boltzmann gas is given by (see lecture)

$$Z^{(c)}(\beta, V, N) = rac{1}{N!} \left(rac{V}{\lambda_{\beta}^3}
ight)^N$$

where $\lambda_{\beta} = h/\sqrt{2\pi mT}$ is the thermal de Broglie wave length.

- a) Calculate the grand canonical partition function using $Z^{(c)}$ from above.
- b) Calculate the squared deviations of the particle number $\Delta N^2 = \langle (N \langle N \rangle)^2 \rangle$ in the grand canonical ensemble and show that the relative deviation $\Delta N / \langle N \rangle$ vanishes in the thermodynamic limit.

XXI. THERMODYNAMIC RELATIONS [(3+6) PTS]

Here we consider a system of N identical particles. E, T, V, and μ are the energy, the temperature, the volume, and the chemical potential, respectively.

a) Prove the following relations:

$$\begin{pmatrix} \frac{\partial E}{\partial N} \end{pmatrix}_{T,V} = \mu - T \left(\frac{\partial \mu}{\partial T} \right)_{V,N} ,$$

$$\begin{pmatrix} \frac{\partial E}{\partial V} \end{pmatrix}_{T,N} = T \left(\frac{\partial S}{\partial V} \right)_{T,N} - p , \ \left(\frac{\partial S}{\partial p} \right)_{T,N} = - \left(\frac{\partial V}{\partial T} \right)_{p,N}$$

b) Prove the following relation for a system with fixed number of particles:

$$K_T - K_S = V \frac{T\alpha_p^2}{C_p}, \quad \frac{C_p}{C_V} = \frac{K_T}{K_S},$$

where

$$C_{V} = \left(\frac{\partial E}{\partial T}\right)_{V} = T\left(\frac{\partial S}{\partial T}\right)_{V}, \quad C_{p} = \left(\frac{\partial H}{\partial T}\right)_{p} = T\left(\frac{\partial S}{\partial T}\right)_{p},$$
$$\alpha_{p} = \frac{1}{V}\left(\frac{\partial V}{\partial T}\right)_{p}, \quad K_{T} = -\frac{1}{V}\left(\frac{\partial V}{\partial p}\right)_{T}, \quad K_{S} = -\frac{1}{V}\left(\frac{\partial V}{\partial p}\right)_{S}.$$

Hint: Use the relation derived in the lecture:

$$C_p - C_V = VT \frac{\alpha_p^2}{K_T} \,.$$