Statistical Physics I - PHYS 663 - Spring 2024

Department of Physics - Northern Illinois University Prof. Andreas Glatz

due 2024-02-29, before class

Exams (tentatively)

midterm : Tuesday, March 19, 2024, 11:00-12:15
final: Tuesday, May 7, 2024

VII. MAXWELL DISTRIBUTION [(4+2) PTS]

The Maxwell velocity distribution describes the probability density for the velocity $\mathbf{v}=\left(v_{x}, v_{y}, v_{z}\right)$ of a particle with mass m in an ideal gas at temperature T. It is given by

$$
N(\mathbf{v}) d^{3} v=\left(\frac{m}{2 \pi k_{B} T}\right)^{3 / 2} \exp \left(-\frac{m \mathbf{v}^{2}}{2 k_{B} T}\right) d^{3} v
$$

a) Calculate the average of the magnitude of the velocity (speed) $|\mathbf{v}|$.
b) Calculate the probability distribution $N_{x}\left(v_{x}\right) d v_{x}$ for the x-component, v_{x}, of the velocity \mathbf{v}.
\star Use $\int_{0}^{\infty} d x x^{n} e^{-a x^{2}}=\Gamma((n+1) / 2) /\left(2 a^{(n+1) / 2}\right)$ for $a>0$.

VIII. HARMONIC OSCILLATORS [4 PTS]

We consider a system of N uncoupled classical oscillators

$$
H(\mathbf{q}, \mathbf{p})=\sum_{i=1}^{N}\left(\frac{\mathbf{p}_{i}^{2}}{2 m_{i}}+\frac{m_{i} \omega_{i}^{2}}{2} \mathbf{q}_{i}^{2}\right)
$$

Each point $\vec{X}=(\mathbf{q}, \mathbf{p}) \equiv\left(\mathbf{q}_{1}, \ldots, \mathbf{q}_{N}, \mathbf{p}_{1}, \ldots, \mathbf{p}_{N}\right)$ in phase-space represents a microstate of the system. A macrostate $M\left(E_{1}, E_{2}\right)$ shall consist of all \vec{X} with $E_{1} \leq H(\vec{X}) \leq E_{2}$. Calculate the phase-space volume $\left|\Gamma\left[M\left(E_{1}, E_{2}\right)\right]\right|$. Discuss how the phase-space volume of a shell $M((1-\epsilon) E, E)$ with relative thickness $0<\epsilon<1$ compares to the phase-space volume of an ellipsoid $M(0, E)$ in the limit for large N.

IX. BOLTZMANN ENTROPY [(5+5) PTS]

Let us consider a system consisting of three sub-volumes with N Ising spins, $s_{i, L}= \pm 1$, in each ($i=1, \ldots, N, L=1,2,3$). Here we neglect their interaction. The macrostate, $M=\left(m_{1}, m_{2}, m_{3}\right)$, shall be defined by the total spins $m_{L}=\sum_{i=1}^{N} s_{i, L}$ of each sub-volume.
a) Calculate the Boltzmann entropy $S(M)$. Using this, obtain the equilibrium state $\tilde{M}=\left(\tilde{m}_{1}, \tilde{m}_{2}, \tilde{m}_{3}\right)$ and its entropy $S(\tilde{M})$.
\star Use Stirling's formula.
b) Calculate the average quadratic fluctuations $\left\langle m_{1}^{2}\right\rangle$ of the total spin in sub-volume 1 .
\star Expand $S(M)$ up to order m_{1}^{2}.

X. POTTS MODEL [(5+7) PTS]

In the classical 3 -state Potts model, each of the N "spins" can have three states. A microstate is defined by the states (1, 2 , or 3) for all spins. A macrostate, on the other hand, is defined by the occupation number $N_{i}=\frac{N}{3}+m_{i}(i=1,2,3)$ of the three spin states. The m_{i} obviously have to fulfill the condition $m_{1}+m_{2}+m_{3}=0$.
a) Find the number $W\left(m_{1}, m_{2}\right)$ of microstates belonging to a macrostate defined by $m_{1,2}$. What is the total number of microstates?
b) For which $m_{1,2}^{0}$ is $W\left(m_{1}, m_{2}\right)$ maximal?
\star Expand $\ln W\left(m_{1}, m_{2}\right)$ around m_{1}^{0}, m_{2}^{0} up to order $\left(m_{i}-m_{i}^{0}\right)^{2}$. How large are the deviations of the macro-variables $m_{1,2}$?

XI. DIRECTED POLYMER II [(4+4+4) PTS]

Here we consider a simplified model for a chain-molecule. We assume that the atoms, $i=0,1, \ldots, N$, of the chain sit on grid points of a square lattice $\left(x_{i}, y_{i}\right)\left(x_{i}, y_{i}\right.$ are integers). Furthermore, the chain starts at $\left(x_{0}, y_{0}\right)=(0,0)$ and the following positions are constrained by $x_{i}-x_{i-1}=1$ and $\left|y_{i}-y_{i-1}\right|=1$. Therefore the chain is directed along x-direction, avoiding, e.g., loops. The positions of the N atoms define the microstate.
a) In problem VI we defined as the macrostate (N, y) all microstates, where the chain ends at $y_{N}=y$. Here we define, similarity, a macrostate as (i, y), where the position $y_{i}=y$ of the i-th atom is fixed. What is the number, $W(i, y)$, of the corresponding microstates? Calculate also: $\sum_{y} W(i, y)$.
\star Remember, there are $N-i$ more atoms in the chain.
b) Next, we define the macrosate as $\left(i, y ; N, y^{\prime}\right)$, where the position of the i-th atom is $y_{i}=y$ and the position of the last atom is $y_{N}=y^{\prime}$. What is the number, $W\left(i, y ; N, y^{\prime}\right)$, of the corresponding microstates? Calculate also: $\sum_{y, y^{\prime}} W\left(i, y ; N, y^{\prime}\right)$.
c) Finally, let us assume that a detector can only measure the position of every 10 th atom, i.e., only $y_{10}, y_{20}, \ldots, y_{N}$ are detected (assume $N=10 n, n \in \mathbb{N}$). How many microstates correspond to each experimentally measured "macrostate", $W\left(y_{10}, y_{20}, \ldots, y_{N}\right)$? Calculate also $\sum_{y_{10}, y_{20}, \ldots, y_{N}} W\left(y_{10}, y_{20}, \ldots, y_{N}\right)$.

