00 = 0O =0 = OO0 "M== 0™~ ™~ O ™™~ O

Carlo

onte-

7))
o
(V)]
=R
S i
c <
mmwhv
S e s
c K%
P e B
rn-_pm.
o

dmm
e oeoe
0 O W
R s il
PADEINCCER

™ O QN CESINCS RTINS SRS S D D 0 D O ™ D

Introduction

Stochastic methods in Computational Physics are based on
random numbers and on the concepts of probability theory.
example of randomness in physical systems is certainly the
outcome of a dice-throw or the drawing of lotto numbers.
random numbers generated by the above methods are effectively
unpredictable

Another example is Brownian motion or diffusion which describes
the random motion of particles

In stochastic Computational Physics methods, one typically needs
a lot of random numbers, which must be generated fast

true random numbers are usually slowly generated 2 we need to
use algorithms.

Random numbers

* Utopia
— True random generators (TRNG): exhibiting “true” randomness, such

as the time between “tics” from a Geiger counter exposed to a
radioactive element

e Hard to find
* Hard to proof
 Complex implementation

* Reality

— Pseudo random number generators (PRNG)

* Sequences having the appearance of randomness, but nevertheless
exhibiting a specific, repeatable pattern.

* numbers calculated by a computer through a deterministic process,
cannot, by definition, be random

“ Any one who consider arithmetical methods of producing random digits is,
of course, in a state of sin.”

John von Neumann [1951]

Physical (True?) RNG

* Radioactive decay
e Air Turbulence in disk drives

 Lavalamp
e.g., http://www.lavarnd.org (not original anymore)

 http://www.random.org

* hardware random number generator (HRNG): Intel 8xx chipset,
now available on most CPUs

* Timing of keystrokes when a user enters a password.
 Measurement of timing skew between two systems timers:
— A hardware timer
— A software timer

A. Glatz: Computational Physics 4

http://www.lavarnd.org/
http://www.random.org/

(Pseudo) Random number generators

([PIRNG)
* Desirable Attributes:
e Uniformity
* Independence
» Efficiency & Parallelizability
* Replicability
* Long Cycle Length
* Needed for:
* Numerical Algorithms
e Simulations
* “Monte-Carlo” Methods
* encryption
* Each random number x; is an independent
sample drawn from a continuous uniform

distribution between 0 and 1 pdf:

1 " . .
e P I

0.8

0.6

L =%

d -.--_!‘. I.-' ",
o Ly
A ey

- .
™, IJ.

‘::Fl::'w:t
N .-_." .=
..b:i‘:v

-..;.’"
-

1
¥

Example: calculation of 7

using MC
(1,0<x<1
f(x) = <
0, else

PRNG algorithms

Remember:

* Given knowledge of the algorithm used to create the
numbers and its internal state (i.e. seed), you can predict
all the numbers returned by subsequent calls to the
algorithm, whereas with genuinely random numbers,
knowledge of one number or an arbitrarily long sequence
of numbers is of no use whatsoever in predicting the next
number to be generated.

 Computer-generated "random" numbers are more
properly referred to as pseudorandom numbers, and
pseudorandom sequences of such numbers.

Example: Linear congruential
generators (LCG)

e Linear Congruential Method:

— Basic generator
X,+1 = (@ X,+¢) (mod m),

— With modulus m = 0, multiplier m>a>0, increment 0<c<m

— Most natural choice for m is one that equals to the
capacity of a computer integer type used.

— m = 2 (binary machine), where b is the number of bits in
the integer type.

— m = 109 (decimal machine), where d is the number of
digits in the integer type.

— X, is called the seed

The appearance of randomness is provided by performing
modulo arithmetic or remaindering

With X, determined, we generate a corresponding real

number as follows:

R,=X./float(m) or R =X, /float(m+1)

When dividing by m, the values, R, are then distributed
on [0,1).

We desire uniformity, where any particular R, is just as
likely to appear as any other R, and the average of the R,
is very close to 0.5.

Again: the next result depends upon only the previous
integer — This is a characteristic of linear, congruential
generators which minimizes storage requirements, but at
the same time, imposes restrictions on the period.

Advantages/Disadvantages

LCGs:

fast and require minimal memory (typically 32 or 64 bits) to retain state
valuable for simulating multiple independent streams

should not be used for applications where high-quality randomness is
critical

not suitable for a Monte Carlo simulation because of the serial correlation
(among other things)

should also not be used for cryptographic applications

LCGs tend to exhibit some severe defects:

* Forinstance, if an LCG is used to choose points in an n-dimensional
space, the points will lie on, at most, m¥/" hyperplanes (Marsaglia's
Theorem, developed by George Marsaglia). This is due to serial
correlation between successive values of the sequence x.. The spectral
test, which is a simple test of an LCG's quality, is based on this fact.

LCG problem

Points fall on planes Ideal random points

concrete LCGs and other examples

LCG: PARK- MILLER parameters: a=57, c=0, m=231-1
LCG + shuffling: generate a random array and access elements randomly
Use more previous numbers (instead of one in LCG):

¢
Xptl = (Z akxnk) mod m

k=0
e.g., Fibonacci generator: Xx,+1 = (x, + x,—1) mod m
lagged Fibonacci generator: replace “+” by any binary operation, such as
addition, subtraction, multiplication or some logical operation

* shift register generator: typical cycle 107>

MARSAGLIA-ZAMAN generator: typical cycle 10172

Mersenne Twister — fast, negligible serial correlation, good for MC, cycle =
219937-1 (used in python)

Read chapter 12 for more details and information

A. Glatz: Computational Physics

11

Testing PRNGs S

1.10
- . N=10°

(Xk)=/dxxkp(x) =/Oldxxk= T !]

e statistical tests:
1.05 +

calculate moments:
calculate correlations:

=5

[]
1.00 H| [HI

(Xan+k) = (Xn>2

* calculate pdf directly by histograms = |
e x?test: check if sum of v squared random 0% }

numbers follow y?-distribution (see book)

0.90
N = 10°

roq o _x
X2 ‘e 2
>
0 1.05

() =F——, x>
PTG

* graphical test (plot e.g. pairs of random 100 L f AP mﬂﬂm
0.95

numbers as points) {,
, a=137, c=0, m=211
. Parker-Miller o ’ ’
(@ 1 - o] (b) 10— .
o] [eq| [e] o ° o OO o o o . 090 ! !
08 p 08 _ j ° o :’ ° 5
o ° o o
T T 105 | N =10’
o]
06 o 06F % o o 7 0 o
E g ‘g . © o ° o o o °
0 8 o S0 o o e g 1.00
04 041° o o o % ° o o
O T
0.2 ‘:. &R 2 © Oéb o) 02 P o ° OO © o ° OO ° 095
3 %_ooaw 0808%(@080 % 0%o P o o ° o o °
%OO&J@%%%%%oggg o) o . o o ° o ;3 o
@ A B R H 8 90528n 0.0 L o o) 090
0.8 1.0 00 02 04 06 08 1.0 0.0 0.2 04 06 0.8
X
n
x_e[0,1]

0.6

0.0 M
0.0 0.2 0.4

A. Glatz: Computational Physics

Monte-Carlo methods

Monte Carlo (MC) methods have been used for
centuries (statistical sampling).

However, during World War Il, this method was used to
simulate the probabilistic issues with neutron diffusion
(first real use).

modern version of the Monte Carlo method invented in
the late 1940s by Stanislaw Ulam, while working on
nuclear weapons projects at the Los Alamos National

Laboratory

named by Nicholas Metropolis, after the Monte Carlo
Casino, where Ulam’s uncle often gambled

A. Glatz: Computational Physics

14

What is a MC method?

Non-Monte Carlo methods typically involve ODE/PDE
equations that describe the system.

Monte Carlo method refers to any method that makes
use of random numbers
— Simulation of natural phenomena

— Simulation of experimental apparatus
— Numerical analysis

Monte Carlo methods are stochastic techniques.

It is based on the use of random numbers and
probability statistics to simulate problems.

Why is MC used?

* It allows us to examine complex systems. And is usually
easy to formulate (independent of the problem).

* For example, solving equations which describe two
atom interactions. This would be doable without using
Monte Carlo method. But solving the interactions for
thousands of atoms using the same equations is
impossible.

 However, the solutions are imprecise and it can be very
slow if higher precision is desired.

Simple Example 1:

Consider a circle inscribed in a unit square:
the circle and the square have a ratio of
areas that is /4 = the value of t can be o
approximated using a Monte Carlo method: | =7 whiin i i
 Draw a square, then inscribe a circle
within it i el b TS N
e Uniformly scatter some objects of uniform ““F oot
size (grains of rice or sand) over the |
square.
* Count the number of objects inside the
circle and the total number of objects.

* The ratio of the two counts is an estimate
of the ratio of the two areas, which is /4.
Multiply the result by 4 to estimate .

Simple Example 2: dice

Problem: What is the probability that 10 dice throws add
up exactly to 32°?

Exact Way. Calculate this exactly by counting all possible
ways of making 32 from 10 dice.

Approximate (Lazy) Way. Simulate throwing the dice (say
500 times), count the number of times the results add up
to 32, and divide this by 500.

Lazy Way can get quite close to the correct answer quite
quickly.

f(x)

Simple Example 3: integration

Method 1: Analytical Integration

Method 2: Numerical, e.g., Quadratures

Method 3: MC — random sampling the area enclosed by
a<x<b and O<y<max (f(x)): hit and miss integration

[FGo)dx =~ max(f(x)(b - a)(

f(x)

a b X

A. Glatz: Computational Physics

#O
#1O+#@

4+ probability{y<f(x)}

General case: integrate function over complicated region G
e Pick a simple (e.g. rectangular) region G’
 Sample N’ random points over G’
* Count pointsin G: N
vol(G) N

vol(G') N’

A. Glatz: Computational Physics

20

Mean-value integration

Other way of MC integration is based on the mean-value theorem for a
continuous function f(x) in x €[a,b], which states that a z€[a,b] exists that:

b
/ def () = Q)b —a)

where f(z)=(f) is the mean or expectation value of f(x).
Therefore:

error, vanishes for N> oo

where we calculate from uniform random x; €[a,b] :

I & -
r 2
f=5 ;f(xi) Pyl

A. Glatz: Computational Physics 21

... more general

The expectation value is in general defined as
) = [axreop

where x€R? and p(x) is a pdf
A typical example is the calculation of the thermal expectation value in statistical
physics where the pdf p(x) is given by the normalized BOLTZMANN distribution:

1 E(x)
px) = 7 EXp [_kB—T}

where E(x) is the energy, ks the Boltzmann constant, T the temperature, and Z the
canonical partition function (normalization)

Metropolis algorithm

The Metropolis algorithm is a more sophisticated method to produce random
numbers from given distributions and is particularly useful to treat problems in
statistical physics where thermodynamic expectation values of some observable

O are of interest
0) = [@0@qe

X is a set of parameters (e.g. coordinates and momenta of particle) and q(x) the

Boltzmann distribution: ()
X
aw="" 2= [

The Metropolis algorithm now aims at generating sampling points x; according to
the pdf q(x), such that the expectation value can be evaluated.

A. Glatz: Computational Physics

rejection method

Suppose we already have n parameter sets: x,, X4,..., X,={X,,} which follow q(x), and
we need to decide if a new value x; should be added:
The Metropolis method introduces the following acceptance probability for x;:

)
T S L
q(x,)
Pr(A|x;, x,) = 5
Q(xt))
otherwise.
\ Q(xn)

(see also chapter 13)

Hence, if Pr(A|x,x,)=1, we set x,,;=X;, and if Pr(A|x,,x,) <1, we draw a random
number r€[0, 1] and accept x; if r<Pr(A|x,X,) and reject x, otherwise.

or more compact: Pr(A|x;, x,) = min (p(xt) 1) = p(x¢|x,)

p(xn)’
The underlying reason for this to work requires knowledge of stochastics in
general and of MARKOV-chains in particular. (see also chapter 16)

We apply this to the Ising model, which illustrates this at a concrete example

24

Example of a simulation process
(e.g. Ising model)

Initialize the system

— Put the system in a random state
Mabke a trial move

— Randomly make a trial move
Calculate the energy change

— Reevaluate the interactions of the moved
particles with its neighbors and calculate
the energy change A

Accept the trial move with the Metropolis scheme ,_ exp(—k =

B

AE >0

1 AE <0

Keep trying the moves until system approach equilibrium

— Either monitor the total energy change, or monitor the structure
formed in the simulation box

Sampling
— Sample a certain property over a certain number of configurations

Homework/lab task

Implement the iterative Poisson solver for

arbitrary charge density p(x,y):

 Reproduce the results for mono, di-, and quadropole

e Solve for two separated oppositely charged
monopoles.

* Calculate the electric field E(x,y) by calculating the
negative gradient of ¢(x,y) [central difference]

Implement a time-dependent heat equation solver
and solve for fixed end temperatures and initial
T.=0 to evolve the temperature profile in time
using the same conditions as for the stationary
case.

Implement MC 1t calculation

