
Computational Physics

Random Numbers and Monte-Carlo
Ø Pseudorandom numbers
Ø Monte-Carlo methods
Ø Metropolis Algorithm



Introduction
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• Stochastic methods in Computational Physics are based on 
random numbers and on the concepts of probability theory.

• example of randomness in physical systems is certainly the 
outcome of a dice-throw or the drawing of lotto numbers.

• random numbers generated by the above methods are effectively 
unpredictable 

• Another example is Brownian motion or diffusion which describes 
the random motion of particles

• In stochastic Computational Physics methods, one typically needs 
a lot of random numbers, which must be generated fast

• true random numbers are usually slowly generated à we need to 
use algorithms.



Random numbers
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• Utopia
– True random generators (TRNG): exhibiting “true” randomness, such 

as the time between “tics” from a Geiger counter exposed to a 
radioactive element
• Hard to find
• Hard to proof
• Complex implementation

• Reality
– Pseudo random number generators (PRNG)

• Sequences having the appearance of randomness, but nevertheless 
exhibiting a specific, repeatable pattern.

• numbers calculated by a computer through a deterministic process, 
cannot, by definition, be random

“Any one who consider arithmetical methods of producing random digits is, 
of course, in a state of sin.”

John von Neumann [1951]



Physical (True?) RNG
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• Radioactive decay 
• Air Turbulence in disk drives
• Lava lamp

e.g., http://www.lavarnd.org (not original anymore)
• http://www.random.org
• hardware random number generator (HRNG): Intel 8xx chipset, 

now available on most CPUs 

• Timing of keystrokes when a user enters a password.
• Measurement of timing skew between two systems timers:

– A hardware timer
– A software timer

http://www.lavarnd.org/
http://www.random.org/


(Pseudo) Random number generators 
([P]RNG)
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• Desirable Attributes:
• Uniformity                    
• Independence
• Efficiency   & Parallelizability                  
• Replicability
• Long Cycle Length

• Needed for:
• Numerical Algorithms
• Simulations
• “Monte-Carlo” Methods
• encryption

• Each random number xi is an independent 
sample drawn from a continuous uniform 
distribution between 0 and 1

Example: calculation of ¼
using MC

ì1 , 0 £ x £ 1
pdf:   f(x) = í

î0 , else 



PRNG algorithms
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Remember:
• Given knowledge of the algorithm used to create the 

numbers and its internal state (i.e. seed), you can predict 
all the numbers returned by subsequent calls to the 
algorithm, whereas with genuinely random numbers, 
knowledge of one number or an arbitrarily long sequence 
of numbers is of no use whatsoever in predicting the next 
number to be generated. 

• Computer-generated "random" numbers are more 
properly referred to as pseudorandom numbers, and 
pseudorandom sequences of such numbers.



Example: Linear congruential 
generators (LCG)
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• Linear Congruential Method:
– Basic generator

Xn+1 = (a Xn+c) (mod m), 
– With modulus m ³ 0, multiplier  m>a>0, increment 0≤c<m
– Most natural choice for m is one that equals to the 

capacity of a computer integer type used.
– m = 2b (binary machine), where b is the number of bits in 

the integer type.
– m = 10d (decimal machine), where d is the number of 

digits in the integer type.
– X0 is called the seed



…
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• The appearance of randomness is provided by performing 
modulo arithmetic or remaindering

• With Xn determined, we generate a corresponding real 
number as follows: 
Rn=Xn/float(m) or Rn=Xn/float(m+1)

• When dividing by m, the values, Rn, are then distributed 
on [0,1). 

• We desire uniformity, where any particular  Rn is just as 
likely to appear as any other Rn, and the average of the Rn
is very close to 0.5. 

• Again: the next result depends upon only the previous 
integer – This is a characteristic of linear, congruential
generators which minimizes storage requirements, but at 
the same time, imposes restrictions on the period. 



Advantages/Disadvantages
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LCGs:
• fast and require minimal memory (typically 32 or 64 bits) to retain state
• valuable for simulating multiple independent streams
• should not be used for applications where high-quality randomness is 

critical
• not suitable for a Monte Carlo simulation because of the serial correlation 

(among other things)
• should also not be used for cryptographic applications
• LCGs tend to exhibit some severe defects:

• For instance, if an LCG is used to choose points in an n-dimensional 
space, the points will lie on, at most, m1/n hyperplanes (Marsaglia's
Theorem, developed by George Marsaglia). This is due to serial 
correlation between successive values of the sequence xi. The spectral 
test, which is a simple test of an LCG's quality, is based on this fact.



LCG problem
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Points fall on planes Ideal random points



concrete LCGs and other examples
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• LCG: PARK- MILLER parameters: a=57, c=0, m=231-1
• LCG + shuffling: generate a random array and access elements randomly
• Use more previous numbers (instead of one in LCG):

• e.g., Fibonacci generator:
• lagged Fibonacci generator: replace “+” by any binary operation, such as 

addition, subtraction, multiplication or some logical operation 
• shift register generator: typical cycle 1075

• MARSAGLIA-ZAMAN generator: typical cycle 10171

• Mersenne Twister – fast, negligible serial correlation, good for MC, cycle = 
219937-1 (used in python)

Read chapter 12 for more details and information

188 12 Pseudo-random Number Generators

The second idea to improve the linear congruential generator is simply to include
more previous elements of the sequence:

xnC1 D
 
X̀

kD0
akxn!k

!
mod m ; (12.12)

where ` > 0 and a` ¤ 0. Again, the periodicity depends highly on the choice of
the parameters and on the seed. A specific variation of random number generators
using Eq. (12.12) are the FIBONACCI generators.

FIBONACCI Generators

The FIBONACCI sequence is given by

xnC1 D xn C xn!1; x0 D 0; x1 D 1 ; (12.13)

which results for n ! 1 in

1; 1; 2; 3; 5; 8; 13; 21; 34; 55; 89; : : : : (12.14)

Choosing in Eq. (12.12) m D 10, ` D 1 and a0 D a1 D 1 simply leaves the last
digits of the sequence (12.14):

1; 1; 2; 3; 5; 8; 3; 1; 4; 5; 9; : : : : (12.15)

This suggests the definition of a pseudo-random number generator based on the
FIBONACCI sequence [11]. It is of the form

xnC1 D .xn C xn!1/ mod m ; (12.16)

which, according to our previous discussion, allows a periodicity exceeding m. A
straightforward generalization results in the so called lagged FIBONACCI genera-
tors:

xnC1 D .xn!p ˝ xn!q/ mod m ; (12.17)

where p; q 2 N and the operator˝ stands for any binary operation, such as addition,
subtraction, multiplication or some logical operation. Two of the most popular
lagged FIBONACCI generators are the shift register generator and the MARSAGLIA-
ZAMAN generator.

The shift register generator is based on the exclusive or (XOR; ˚) operation,
which acts on each bit of the numbers xn!p and xn!q. In particular, the recurrence
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Testing PRNGs
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12.3 Quality Tests 191

Fig. 12.1 Spectral test for a linear congruential generator. We used the PARK-MILLER parameters,
(a) a D 75, c D 0, and m D 231 ! 1, (b) a D 137, c D 0, and m D 211, and plotted N D 103

subsequent pairs .xn; xnC1/ of random numbers. In frame (a) the random numbers evolve nicely
distributed within the unit square, showing no obvious correlations. On the other hand, in frame
(b) subsequent random numbers lie on hyperplanes and, thus, develop correlations: They do not
fill the unit square uniformly

Another, quite evident test, is the analysis of the symmetry of the distribution. If
Xn 2 Œ0; 1! is uniformly distributed then it follows that .1 ! Xn/ 2 Œ0; 1! should also
be uniformly distributed.

Finally, we discuss a graphical test, known as the spectral test [7]. The spectral
test consists of plotting subsequent random numbers xn vs xnC1 and of visual
inspection of the result. One expects the random numbers to uniformly fill the unit-
square, however, if correlations exist, particular patterns might evolve. We illustrate
this method in Fig. 12.1 where it is applied to a linear congruential generator (12.9)
with two different sets of parameters.

Hypothesis Testing

Basically, one could employ different hypothesis tests, such as the KOLMOGOROV-
SMIRNOV test, to test random numbers. These tests are rather basic and are
discussed in numerous books on statistics. In what follows we shall briefly mention
the "2-test; for more advanced techniques we refer the reader to the literature
[13, 14].

The "2-test tests the pdf directly. One starts by sorting the N elements of the
sequence into a histogram. Suppose we would like to have M bins and, hence,
the width of every bin is given by 1=M. We now count the number of elements
which lie within bin k, i.e. within the interval Œ.k ! 1/=M; k=M!, and denote this
number by nk. The histogram array h is given by h D c.n1; n2; : : : ; nM/T where

• statistical tests:
• calculate moments: 
• calculate correlations:
• calculate pdf directly by histograms à
• 𝜒2 test: check if sum of 𝜈 squared random 

numbers follow 𝜒2-distribution (see book)

• graphical test (plot e.g. pairs of random 
numbers as points) ↓

190 12 Pseudo-random Number Generators

12.3 Quality Tests

Here, we discuss some tests to check whether or not a given, finite sequence of
numbers xn consists of uniformly distributed random numbers out of the interval
xn 2 Œ0; 1!.1

Statistical Tests

Statistical tests are generally the most simple methods to arrive at a first idea of the
quality of a pseudo-random number generator. Statistical tests are typically based
on the calculation of moments or correlations. Since we regard the simplified case
of uniformly distributed, uncorrelated random numbers within the interval Œ0; 1!, the
moments can be calculated immediately from (see Appendix, Sect. E.2)

˝
Xk˛ D

Z
dx xkp.x/ D

Z 1

0

dx xk D 1

kC 1
; (12.22)

for k 2 N. These moments are approximated using the generated finite sequence of
numbers fxngnD1;:::;N via

˝
Xk˛ ! xk D 1

N

NX

nD1
xkn : (12.23)

As illustrated in Appendix, Sect. E.2, the error of this approximation is of order
O
!
1=

p
N
"
and

˝
Xk˛ D xk C O

#
1p
N

$
: (12.24)

Another method studies correlations (see Appendix, Sects. E.2 and E.10)
between the random numbers of the sequence and compare it with the analytical
result. We obtain for uncorrelated random numbers:

hXnXnCki D hXni2 D
1

4
: (12.25)

1From now on we define quite generally the interval out of which random numbers xn are drawn by
xn 2 Œ0; 1! keeping in mind that this interval depends on the actual method applied. This method
determines whether zero or one is contained in the interval.
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Fig. 12.2 Histograms for
N D 105 , N D 106 and
N D 107 ,M D 100 bins as
obtained with the
PARK-MILLER linear
congruential generator,
a D 75 , c D 0 and
m D 231 ! 1

the constant c D M=N normalizes the histogram. In Fig. 12.2 we show three
different histograms for N D 105, N D 106 and N D 107 uniformly distributed
random numbers as obtained with the PARK-MILLER linear congruential generator.
In Fig. 12.3 we present a histogram for N D 107 obtained with the bad linear
congruential generator defined in Fig. 12.1b. We recognize numerous empty bins
which are a clear indication that the random numbers are not uniformly distributed.

Let us briefly remember some points from probability theory [15, 16]. One can
show, that if numbers Qn are normally distributed random variables, their sum

x D
!X

nD1
Q2n ; (12.26)

Parker-Miller

Parker-Miller

a=137, c=0, m=211
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Fig. 12.3 Histogram for N D 107 and M D 100 bins as obtained with a linear congruential
generator with parameters a D 137, c D 0 and m D 211

follows a !2-distribution where " is the number of degrees of freedom. The pdf of
the !2-distribution is given by

p.xI "/ D x
"
2!1e! x

2

2
"
2 #

!
"
2

" ; x ! 0 ; (12.27)

where # ."/ denotes the # -function. The probability of finding the variable x within
the interval Œa; b$ # RC can be calculated as

P.x 2 Œa; b$I "/ D
Z b

a
dx p.xI "/ ; (12.28)

and in particular for a D 0 we obtain

P.x < bI "/ D
Z b

0

dx p.xI "/ D F.bI "/ : (12.29)

Here we introduced the cdf F.bI "/. Let us consider the inverse problem: the
probability that x $ b is equal to ˛, i.e. F.bI "/ D ˛. We then calculate the upper
bound b by inverting Eq. (12.29) and obtain:

b D F!1.˛I "/ : (12.30)

These values are tabulated [17, 18].
We return to our particular example: the hypothesis is that the sequence fxng

generated by some pseudo-random number generator complies to a uniform distri-
bution. It is a consequence of the central limit theorem (see Appendix, Sect. E.8) that
the deviations from the theoretically expected values nthk obey a normal distribution.



Monte-Carlo methods
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• Monte Carlo (MC) methods have been used for 
centuries (statistical sampling).

• However, during World War II, this method was used to 
simulate the probabilistic issues with neutron diffusion 
(first real use).

• modern version of the Monte Carlo method invented in 
the late 1940s by Stanislaw Ulam, while working on 
nuclear weapons projects at the Los Alamos National 
Laboratory

• named by Nicholas Metropolis, after the Monte Carlo 
Casino, where Ulam’s uncle often gambled
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What is a MC method?
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• Non-Monte Carlo methods typically involve ODE/PDE 
equations that describe the system. 

• Monte Carlo method refers to any method that makes 
use of random numbers
– Simulation of natural phenomena
– Simulation of experimental apparatus 
– Numerical analysis

• Monte Carlo methods are stochastic techniques.
• It is based on the use of random numbers and 

probability statistics to simulate problems.



Why is MC used?
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• It allows us to examine complex systems. And is usually 
easy to formulate (independent of the problem).

• For example, solving equations which describe two 
atom interactions. This would be doable without using 
Monte Carlo method. But solving the interactions for 
thousands of atoms using the same equations is 
impossible.

• However, the solutions are imprecise and it can be very 
slow if higher precision is desired.



Simple Example 1: ¼
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Consider a circle inscribed in a unit square: 
the circle and the square have a ratio of 
areas that is π/4 à the value of π can be 
approximated using a Monte Carlo method:
• Draw a square, then inscribe a circle 

within it
• Uniformly scatter some objects of uniform 

size (grains of rice or sand) over the 
square.

• Count the number of objects inside the 
circle and the total number of objects.

• The ratio of the two counts is an estimate 
of the ratio of the two areas, which is π/4. 
Multiply the result by 4 to estimate π.



Simple Example 2: dice
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• Problem: What is the probability that 10 dice throws add 
up exactly to 32?

• Exact Way. Calculate this exactly by counting all possible 
ways of making 32 from 10 dice. 

• Approximate (Lazy) Way. Simulate throwing the dice (say 
500 times), count the number of times the results add up 
to 32, and divide this by 500. 

• Lazy Way can get quite close to the correct answer quite 
quickly.



Simple Example 3: integration
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f(x)

a b x

f(x)

a b

• Method 1: Analytical Integration
• Method 2: Numerical, e.g., Quadratures
• Method 3: MC – random sampling the area enclosed by 

a<x<b and 0<y<max (f(x)): hit and miss integration 

f (x)dx
a

b
∫ ≈max( f (x))(b− a) #

# + #
$

%
&

'

(
)

probability{y<f(x)}



…
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General case: integrate function over complicated region G
• Pick a simple (e.g. rectangular) region G’
• Sample N’ random points over G’
• Count points in G: N



Mean-value integration
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Other way of MC integration is based on the mean-value theorem for a 
continuous function f(x) in x ∈[a,b], which states that a z∈[a,b] exists that:

where f(z)≡⟨f⟩ is the mean or expectation value of f(x).
Therefore:

where we calculate from uniform random xi ∈[a,b] :

214 14 A Brief Introduction to Monte-Carlo Methods

Fig. 14.2 Schematic
illustration of the
Monte-Carlo integration
technique

Another way to perform a Monte-Carlo integration is the so called mean-value
integration. It is essentially based on the mean value theorem of calculus which we
already employed in our discussion of quadrature in Chap. 3. We restate it here for
the sake of a more transparent presentation: The mean-value theorem states that if
f .x/ is a continuous function for x 2 Œa; b! then there exists a z 2 .a; b/ such that

Z b

a
dx f .x/ D f .z/.b ! a/ : (14.8)

The function value f .z/ " h f i is referred to as the expectation value or mean value
of f .x/. We know from probability theory [5–7] that the expectation value can be
approximated by the arithmetic mean f

1

b ! a

Z b

a
dx0f .x0/ ' f ˙

s
f 2 ! f

2

N
; (14.9)

with the error given by the standard error, Eq. (E.14). The arithmetic mean f , on the
other hand, is given by

f D 1

N

NX

iD1
f .xi/ ; (14.10)

and consequently

f 2 D 1

N

NX

iD1
f 2.xi/ : (14.11)

Note that here the variables xi are assumed to be uniformly distributed random
numbers within the interval Œa; b!. (This result will immediately be discussed in
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error, vanishes for Nà∞
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The expectation value is in general defined as

where x∈ℝd and p(x) is a pdf
A typical example is the calculation of the thermal expectation value in statistical 
physics where the pdf p(x) is given by the normalized BOLTZMANN distribution:

where E(x) is the energy, kB the Boltzmann constant, T the temperature, and Z the 
canonical partition function (normalization)

… more general
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14.2 Monte-Carlo Integration 215

more detail.) However, first of all we note from the law of large numbers, Eq. (E.25),
that this approach is exact in the limit N ! 1:

1

b ! a

Z b

a
dx0f .x0/ D lim

N!1
1

N

NX

iD1
f .xi/ : (14.12)

Let us now consider the more general case which, in the end, will guide us to
a very prominent formulation of Monte-Carlo integration. We want to estimate the
expectation value

h f i D
Z

dx f .x/p.x/ ; (14.13)

where x 2 Rd and p.x/ is a pdf. A typical example is the calculation of the thermal
expectation value in statistical physics where the pdf p.x/ is given by the normalized
BOLTZMANN distribution

p.x/ D 1

Z
exp

!
!E.x/
kBT

"
: (14.14)

Here E.x/ denotes the energy as a function of the parameter x 2 Rd, kB stands
for BOLTZMANN’s constant, T is the temperature, and the normalization factor Z is
referred to as the canonical partition function [8–11].

Equation (14.13) may be rewritten as

h f i D
Z

dx f .x/p.x/ D
Z

df f q. f / ; (14.15)

where we introduced the probability density q. f / of f via

q. f / D
Z

dx ı Œ f ! f .x/! p.x/ ; (14.16)

with ı."/ DIRAC’s ı-distribution. Let us briefly explain how we arrived at this
definition. Let the cdf P.x/ be defined by1

P.x/ D Pr.X # x/ D
Z x

!1
dx p.x/ : (14.17)

1Please note that according to the conventions established in Appendix E capital letters denote
random variables.
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more detail.) However, first of all we note from the law of large numbers, Eq. (E.25),
that this approach is exact in the limit N ! 1:

1

b ! a

Z b

a
dx0f .x0/ D lim

N!1
1

N

NX

iD1
f .xi/ : (14.12)

Let us now consider the more general case which, in the end, will guide us to
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h f i D
Z

dx f .x/p.x/ ; (14.13)
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p.x/ D 1

Z
exp

!
!E.x/
kBT

"
: (14.14)

Here E.x/ denotes the energy as a function of the parameter x 2 Rd, kB stands
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The Metropolis algorithm is a more sophisticated method to produce random 
numbers from given distributions and is particularly useful to treat problems in 
statistical physics where thermodynamic expectation values of some observable 
O are of interest

x is a set of parameters (e.g. coordinates and momenta of particle) and q(x) the 
Boltzmann distribution:

The Metropolis algorithm now aims at generating sampling points xi according to 
the pdf q(x), such that the expectation value can be evaluated.
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corresponds to the number of d-dimensional random numbers x. Hence, Monte-
Carlo integration can be of advantage whenever one has to deal with complicated,
high dimensional integrals. In contrast, restricted to one dimension it is in most
cases not an improvement of the methods discussed already.

Monte-Carlo integration can also be of advantage whenever the integrand f .x/ is
not well behaved. In such a case a very fine grid would be required to compute a
reasonable estimate of the true value of the integral. Monte-Carlo integration offers
a very convenient alternative due to its conceptual simplicity [13].

It is certainly a drawback of Monte-Carlo integration in its formulation (14.34),
that the error is also proportional to

p
var . f / which is a yet unknown quantity.

One has to approximate it with an adequate estimator, for instance with the help of
the sampling variance. Moreover, if the variance var . f / diverges, the central limit
theorem does not hold and the procedure (14.34) is no longer justified and will fail
for sure.

Closely related to the problem of how to determine var . f /, is the question of
how many random numbers should be drawn. In most cases an iterative approach
is the most promising strategy. In a first step N random numbers are drawn and the
integral is computed using Eq. (14.34). Then another set of N random numbers is
sampled and Eq. (14.34) is reevaluated now using all 2N random numbers. If the
change in the resulting estimate of the integral is less than some given tolerance !,
the loop is terminated otherwise another set of N random numbers is added.

We mention that this form of Monte-Carlo integration can be improved partic-
ularly by sampling only from points which dominantly contribute to the integral.
This method is referred to as importance sampling [13–16] and will be discussed in
more detail later on.

14.3 The METROPOLIS Algorithm: An Introduction

The METROPOLIS algorithm is a more sophisticated method to produce random
numbers from given distributions. In fact, the METROPOLIS algorithm is a special
form of the rejection method (Sect. 13.3). This section introduces the algorithm on
a very basic level which will, in the end, allow a first glance at an interesting model
out of statistical physics, namely the ISING model. It will be discussed in Chap. 15
and a more detailed discussion of the METROPOLIS algorithm will be postponed to
Sect. 16.4.

The METROPOLIS algorithm is particularly useful to treat problems in statistical
physics where thermodynamic expectation values of some observable O are of
interest [8–11]. They are defined as

hOi D
Z

dxO.x/q.x/ ; (14.35)
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where x is a set of parameters and q.x/ is the BOLTZMANN distribution (14.14).
The set of parameters x could be, for instance, the position- and momentum-space
coordinates of N different particles. In most cases x is a high dimensional object
which makes classical numerical integration (Chap. 3) cumbersome. InsteadMonte-
Carlo integration is employed and the integral (14.35) is approximated with the help
of Eq. (14.34) by

hOi ! 1

N

NX

iD1
O.xi/˙

r
var .O/

N
; (14.36)

where the uncorrelated random numbers xi, i D 1; 2; : : : ;N are sampled from the
pdf, Eq. (14.14). We recognize immediately the problem: we need to know the exact
functional form of q.x/ if we want to apply either the inverse transformation method
or the rejection method discussed in Chap. 13. However, the partition function Z
itself is determined by an integral which can be approximated using Eq. (14.36). We
set

q.x/ D p.x/
Z

; (14.37)

and

Z D
Z

dx p.x/ (14.38)

follows from the normalization of q.x/. The METROPOLIS algorithm was
designed to avoid precisely this problem. We concentrate on a pdf which is of
the form (14.37), but q.x/ must not necessarily be described by a normalized
BOLTZMANN distribution, Eq. (14.14). Thus, p.x/ is arbitrary but it ensures that

Z
dx q.x/ D 1”

Z
dx p.x/ D Z ; (14.39)

and q.x/ " 0 for all x. In other words, q.x/ is a pdf. Suppose we already have a
sequence x0; x1; : : : ; xn D fxng of parameters which indeed follows the pdf q.x/.4

We now add to the last element of this sequence xn a small perturbation ı and set

xt D xn C ı : (14.40)

Note that the perturbation ı is of the same dimension as the vector x. Similar to the
rejection method we seek for a criterion which helps us to decide whether or not the
test value xt can be accepted as the next element of the sequence fxng.

4The question of how one can obtain such a sequence will be discussed in Sect. 16.3.
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(see also chapter 13)

Suppose we already have n parameter sets: x0, x1,…, xn={xn} which follow q(x), and 
we need to decide if a new value xt should be added:
The Metropolis method introduces the following acceptance probability for xt:

Hence, if Pr(A|xt,xn)=1, we set xn+1=xt, and if Pr(A|xt,xn) < 1, we draw a random 
number r∈[0, 1] and accept xt if r<Pr(A|xt,xn) and reject xt otherwise.

or more compact:

The underlying reason for this to work requires knowledge of stochastics in 
general and of MARKOV-chains in particular.
We apply this to the Ising model, which illustrates this at a concrete example 

14.3 The METROPOLIS Algorithm: An Introduction 221

The METROPOLIS method proposes an acceptance probability of the form

Pr.Ajxt; xn/ D

8
ˆ̂̂
<

ˆ̂̂
:

1 if
q.xt/
q.xn/

! 1 ;

q.xt/
q.xn/

otherwise:

(14.41)

Hence, if Pr.Ajxt; xn/ D 1, we set xnC1 D xt, and if Pr.Ajxt; xn/ < 1, we draw a
random number r 2 Œ0; 1! and accept xt if r " Pr.Ajxt; xn/ and reject xt otherwise.
We note that in this formulation the knowledge of the normalization factor Z is no
longer required since it follows from Eq. (14.37) that

q.xt/
q.xn/

D p.xt/
p.xn/

: (14.42)

Consequently we rewrite Eq. (14.41) as

Pr.Ajxt; xn/ D min
!
p.xt/
p.xn/

; 1

"
D p.xtjxn/ ; (14.43)

where we introduced in the last step a more compact notation.
A discussion of the underlying concepts and why the choice (14.41) indeed

samples random numbers according to the pdf q.x/ requires some basic knowledge
of stochastics in general and of MARKOV-chains in particular. This is the reason
why we postponed this discussion to Chap. 16. Nevertheless, there is a particular
property, referred to as detailed balance which requires our attention because it
is crucial for the METROPOLIS algorithm: Let p.xtjxn/ denote the pdf for the
probability that a random number xt is generated from the random number xn as
defined in Eq. (14.43). Then the condition of detailed balance is defined as

p.xtjxn/q.xn/ D p.xnjxt/q.xt/ : (14.44)

In words: The probability p.xtjxn/ that a random number xt is generated from a
random number xn times the probability q.xn/ that the random number xn occurred
at all is equal to the probability p.xnjxt/ that the random number xn is generated
from xt times the probability q.xt/ that xt occurred. Detailed balance is motivated by
physics and is a condition of thermodynamic equilibrium.

Let us briefly demonstrate that the METROPOLIS algorithm (14.43) satisfies
detailed balance: We distinguish three different cases: (i) Suppose that p.xtjxn/ D
p.xnjxt/ D 1. From Eq. (14.43) we note that this is only possible if p.xt/ D p.xn/
and therefore q.xt/ D q.xn/ which is already Eq. (14.44) for this particular case. (ii)
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(see also chapter 16)



Example of a simulation process 
(e.g. Ising model)
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• Initialize the system
– Put the system in a random state

• Make a trial move
– Randomly make a trial move

• Calculate the energy change
– Reevaluate the interactions of the moved 

particles with its neighbors and calculate 
the energy change

• Accept the trial move with the Metropolis scheme

• Keep trying the moves until system approach equilibrium
– Either monitor the total energy change, or monitor the structure 

formed in the simulation box
• Sampling

– Sample a certain property over a certain number of configurations

P = exp −
ΔE
kBT
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Homework/lab task
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• Implement the iterative Poisson solver for 
arbitrary charge density 𝜌(x,y):
• Reproduce the results for mono, di-, and quadropole
• Solve for two separated oppositely charged 

monopoles.
• Calculate the electric field E(x,y) by calculating the 

negative gradient of 𝜑(x,y) [central difference]
• Implement a time-dependent heat equation solver 

and solve for fixed end temperatures and initial 
Ti=0 to evolve the temperature profile in time 
using the same conditions as for the stationary 
case.

• Implement MC 𝛑 calculation 


